DNA points to millennia of stability in East Asian hunter-fisher population

In a remote corner of eastern Russia, where long winters bring temperatures that rarely flicker above freezing, the genetic legacy of ancient hunter-gatherers endures.

DNA from the 7,700-year-old remains of two women is surprisingly similar to that of people living in that area today, researchers report February 1 in Science Advances. That finding suggests that at least some people in East Asia haven’t changed much over the last 8,000 years or so — a time when other parts of the world saw waves of migrants settle in.
“The continuity is remarkable,” says paleogeneticist Carles Lalueza-Fox of the Institute of Evolutionary Biology in Barcelona, who was not involved with the work. “It’s a big contrast to what has been found in Europe.”

In Western Europe especially, scientists studying ancient DNA have put together a picture of flux, says study coauthor Andrea Manica. “Every few thousand years, there are major turnovers of people.” Around 8,000 years ago, he says, migrating farmers replaced hunter-gatherers in the area. And a few thousand years after that, Bronze Age migrants from Central Asia swept in.

In DNA collected from the bones and teeth of these ancient peoples, scientists can spot genetic signatures of different populations. When a population of farmers balloons, Lalueza-Fox says, the signatures of hunter-gatherers are mostly erased.

But whether that’s true across the globe is unclear, says Manica, of the University of Cambridge. “We wanted to see what happened in other places…. Asia is huge compared to Europe, and it’s been neglected.”
Manica’s team collected DNA from the skeletons of five ancient people found in a cave called Devil’s Gate. The cave rests in a far east finger of Russia, tucked along the border of China and North Korea, and holds human remains, scraps of textiles and bits of broken pottery.

Researchers gathered enough DNA from two of the people to piece together about 6 percent of the genome, the complete set of genetic instructions inside a cell’s nucleus. That’s not much, Manica says, but it’s enough to compare the Devil’s Gate denizens with other people. The researchers analyzed the genomes of people strewn across the far reaches of the continent — from the Dolgan in Siberia to the Thai thousands of kilometers south.

Genetically, the 7,700-year-old women closely resembled the Ulchi, a small group of hunter-fishers who still live off the land today. Manica can’t say whether the Ulchi are direct descendants of the two Devil’s Gate women, or just closely related. But the find suggests a pocket of stability in East Asia — a place where hunter-gatherers weren’t swept out by, or folded into, booming groups of farmers.

Perhaps farming didn’t take off there because the cold climate wasn’t good for growing crops, Manica says. Or maybe the ideas and technologies from farmers and other migrants made it to the Ulchi without an accompanying influx of people. (The Ulchi aren’t like primitive hunter-gatherers of the past. They farm a bit, and have adopted new ways to fish, hunt and store food, he points out.)

“This shows that ideas can travel without people moving with them,” Manica says.

That makes sense, Lalueza-Fox says. But scientists now need more data — additional samples from East Asia, and Southeast Asia, too, he says. “I have a feeling the whole story will be much more complicated.”

Mapping rainforest chemistry from the air reveals 36 types of forest

To some forest creatures, a tree is a home. To scientists, it’s a beacon. A new way of mapping forests from the air by measuring chemical signatures of the tree canopy is revealing previously unrecognized biodiversity.

The swath of tropical forest covering the Peruvian Andes Mountains and the Amazon basin is one of the most biodiverse places on Earth. But it’s such a wild and remote region that variation within the forest is hard to spot.
“If you look in Google Earth, it just looks like a big green blanket,” says study coauthor Greg Asner, an ecologist at the Carnegie Institution for Science in Stanford, Calif.

Up close, it’s a different story. Each tree species has a distinctive set of chemical traits, such as levels of nutrients like nitrogen and phosphorus in the leaves. Collectively, those characteristics can reveal a lot about the makeup of the forest.
To peek beneath the green blanket, Asner and colleagues divided 76 million hectares of forest into 100-kilometer squares. The researchers measured levels of water, nitrogen, phosphorus and calcium in the trees’ leaves via aircraft by measuring the wavelengths of light reflected by the forest canopy, taking samples from small areas of each square. They also mapped leaf levels of lignins and polyphenols, two chemicals used for defense. Using that data, the scientists identified 36 unique types of forest — a much more nuanced view than the broad categories currently used for classification, the researchers report January 27 in Science. They parceled those highly specific forest types into six groups that roughly aligned with the country’s topography and geography.
Parsing out these differences in forests at such a fine scale is important for guiding conservation efforts, Asner says. A particular spot might appear at a distance to be the same as its surroundings but may actually contain species found nowhere else.

The team is now carrying out similar studies in northern Borneo and Ecuador. Eventually the researchers hope to boost their sensors into orbit to map biodiversity around the globe.

‘Monkeytalk’ invites readers into the complex social world of monkeys

The social lives of macaques and baboons play out in what primatologist Julia Fischer calls “a magnificent opera.” When young Barbary macaques reach about 6 months, they fight nightly with their mothers. Young ones want the “maternal embrace” as they snooze; mothers want precious alone time. Getting pushed away and bitten by dear old mom doesn’t deter young macaques. But they’re on their own when a new brother or sister comes along.
In Monkeytalk, Fischer describes how the monkey species she studies have evolved their own forms of intelligence and communication. Connections exist between monkey and human minds, but Fischer regards differences among primate species as particularly compelling. She connects lab studies of monkeys and apes to her observations of wild monkeys while mixing in offbeat personal anecdotes of life in the field.

Fischer catapulted into a career chasing down monkeys in 1993. While still in college, she monitored captive Barbary macaques. That led to fieldwork among wild macaques in Morocco. In macaque communities, females hold central roles because young males move to other groups to mate. Members of closely related, cooperative female clans gain an edge in competing for status with male newcomers. Still, adult males typically outrank females. Fischer describes how the monkeys strategically alternate between attacking and forging alliances.

After forging her own key scientific alliances, Fischer moved on to study baboons in Africa, where she entered the bureaucratic jungle. Obtaining papers for a car in Senegal, for instance, took Fischer several days. She first had to shop for a snazzy outfit to impress male paper-pushers, she says. Fischer and her local guide then shuttled from one government official to another until a well-timed phone call from a local police chief to a key bureaucrat finally produced the forms.

Monkeys get the job done using their own brand of intelligence, Fischer writes. Macaques and baboons navigate their home regions expertly, discern small quantities and object sizes pretty well, and know who’s socially dominant over whom. These abilities are somewhat humanlike, but Fischer draws a bright line between monkeys’ and people’s social lives. Our primate relatives specialize in tracking comrades’ behaviors, she holds, rather than trying to infer others’ plans and desires. And unlike human groups, monkey communities don’t steadily accumulate knowledge and innovations or communicate in languagelike ways, Fischer contends.

So what if monkeys don’t write books or gossip about each other? Their social lives are complex enough to remain largely a mystery to humans, Fischer concludes. The gritty work of conducting long-term studies, especially in the wild, can illuminate the worlds inhabited by monkeys.

Math-anxious brains tackle simple problems differently

SAN FRANCISCO — When faced with simple math problems, people who get jittery about the subject may rely more heavily on certain brain circuitry than math-savvy people do. The different mental approach could help explain why people with math anxiety struggle on more complicated problems, researchers reported March 25 at the Cognitive Neuroscience Society’s annual meeting.

While in fMRI machines, adults with and without math anxiety evaluated whether simple arithmetic problems, such as 9+2=11, were correct or incorrect. Both groups had similar response times and accuracy on the problems, but brain scans turned up differences.

Specifically, in people who weren’t anxious about math, lower activation of the frontoparietal attention network was linked to better performance. That brain network is involved in working memory and problem solving. Math-anxious people showed no correlation between performance and frontoparietal network activity.

People who used the circuit less were probably getting ahead by automating simple arithmetic, said Hyesang Chang, a cognitive neuroscientist at the University of Chicago. Because math-anxious people showed more variable brain activity overall, Chang speculated that they might instead be using a variety of computationally demanding strategies. This scattershot approach works fine for simple math, she said, but might get maxed out when the math is more challenging.

Squabbles in star nurseries result in celestial fireworks

A stellar game of chicken between two young stars about 500 years ago has produced some fantastic celestial fireworks, new images released on April 7 by the European Southern Observatory reveal.

Whether or not the stellar duo collided is unclear. But their close encounter sent hundreds of streamers of gas, dust and other young stars shooting into space like an exploding firecracker. Using the Atacama Large Millimeter/submillimeter Array in Chile, John Bally of the University of Colorado Boulder and colleagues made the first measurements of the velocities of carbon monoxide gas in the streamers. From the data, they identified the spot where the stars probably interacted and determined that the encounter ripped apart the stellar nursery in which the stars were born. Such a cataclysmic event flung nursery debris into space at speeds faster than 540,000 kilometers an hour.

The dueling stars were born in a stellar nursery called Orion Molecular Core 1, about 1,500 light-years from Earth behind the Orion Nebula. There, gas weighing 100 suns collapses under its own gravity, making the material dense enough for embryotic stars to take shape. Gravity can pull those stellar seeds toward each other, with some grazing or colliding with each other and violently erupting. In this case, the encounter produced a kick as powerful as the energy the sun emits over 10 million years.

This explosion may have initially released a burst of infrared light lasting years to decades. If so, such spars among young stars might explain mysterious infrared flashes observed in other galaxies, the scientists suggest.

Young eels use magnetic ‘sixth sense’ to navigate

Earth’s magnetic field helps eels go with the flow.

The Gulf Stream fast-tracks young European eels from their birthplace in the Sargasso Sea to the European rivers where they grow up. Eels can sense changes in Earth’s magnetic field to find those highways in a featureless expanse of ocean — even if it means swimming away from their ultimate destination at first, researchers report in the April 13 Current Biology.

European eels (Anguilla anguilla) mate and lay eggs in the salty waters of the Sargasso Sea, a seaweed-rich region in the North Atlantic Ocean. But the fish spend most of their adult lives living in freshwater rivers and estuaries in Europe and North Africa.
Exactly how eels make their journey from seawater to freshwater has baffled scientists for more than a century, says Nathan Putman, a biologist with the National Oceanic and Atmospheric Administration in Miami.

The critters are hard to track. “They’re elusive,” says study coauthor Lewis Naisbett-Jones, a biologist now at the University of North Carolina at Chapel Hill. “They migrate at night and at depth. The only reason we know they spawn in the Sargasso Sea is because that’s where the smallest larvae have been collected.”

Some other marine animals, like sea turtles and salmon, tune in to subtle changes in Earth’s magnetic field to help them migrate long distances. To test whether eels might have the same ability, Putman and his colleagues placed young European eels in a 3,000-liter tank of saltwater surrounded by copper wires. Running electric current through the wires simulated the magnetic field experienced at different places on Earth.
With no electric current, the eels didn’t swim in any particular direction. But when the magnetic field matched what eels would experience in the Sargasso Sea, the fish mostly swam to the southwest corner of their tank. That suggests the eels might use the magnetic field as a guide to help them move in a specific direction to leave their spawning grounds.

Swimming southwest from the Sargasso Sea seems counterintuitive for an eel trying to ultimately go northeast, Putman says. But computer simulations revealed that that particular bearing would push eels into the Gulf Stream, whisking them off to Europe. Catching a more circuitous ride on a current is probably more efficient for the eels than swimming directly across the North Atlantic, says Putman.

Magnetic fields could help eels stay the course, too. A magnetic field corresponding to a spot in the North Atlantic further along the eels’ route to Europe sent the eels in the tank heading northeast. That’s the direction they’d need to go to keep following the Gulf Stream to Europe.

The researchers did see a fair amount of variation in how strongly individual eels responded to magnetic fields. But that makes sense, says Julian Dodson, a biologist at Laval University in Quebec City who wasn’t part of the study. The Gulf Stream is such a powerful current that the eels could wriggle in a spread of directions to get swept up in its flow.

Now, the researchers are looking at whether adult eels use a similar magnetic map to get back to the Sargasso Sea. Adults follow a meandering return route that might take more than a year to complete, previous research suggests (SN Online: 10/5/16). But whether there’s some underlying force that guides them remains to be seen.

March for Science will take scientists’ activism to a new level

Lab coats aren’t typical garb for mass demonstrations, but they may be on full display April 22. That’s when thousands of scientists, science advocates and science-friendly citizens are expected to flood the streets in the March for Science. Billed by organizers as both a celebration of science and part of a movement to defend science’s vital role in society, the event will include rallies and demonstrations in Washington, D.C., and more than 400 other cities around the world.

“Unprecedented,” says sociologist Kelly Moore, an expert on the intersection of science and politics at Loyola University Chicago. “This is the first time in American history where scientists have taken to the streets to collectively protest the government’s misuse and rejection of scientific expertise.”

Some scientists have expressed concern that marching coats science in a partisan sheen; others say that cat is long out of the bag. Keeping science nonpartisan is a laudable goal, but scientists are human beings who work and live in societies — and have opinions as scientists and citizens when it comes to the use, or perceived misuse, of science.

Typically when scientists get involved with a political issue, it’s as an expert sharing knowledge that can aid in creating informed policy. There are standard venues for this: Professional societies review evidence and make statements about a particular issue, researchers publish findings or consensus statements in reports or journals, and sometimes scientists testify before Congress.

In extreme circumstances, though, scientists have embraced other forms of activism. To broadly categorize, there are:

Celebrity voices
In 1938, amid the rise of fascism and use of false scientific claims to support the racism embedded in Nazism, prominent German-American anthropologist Franz Boas released his “Scientists Manifesto.” Signed by nearly 1,300 scientists, including three Nobel laureates, the manifesto denounced the unscientific tenets of Nazism and condemned fascist attacks on scientific freedom.
Fear of war of a different sort prompted Albert Einstein, Bertrand Russell and nine other scientists to compose a manifesto in 1955 calling for nuclear disarmament. The Russell-Einstein Manifesto led to the first Pugwash Conference on Science and World Affairs, which sought “a world free of nuclear weapons and other weapons of mass destruction.”
Wildlife biologist Rachel Carson eloquently synthesized research on the effects of pesticides in her wildly popular book Silent Spring, published in 1962 (she would later testify before Congress). Despite attacks from industry and some in government, Carson’s work helped launch the modern environmental movement, paving the way for the establishment of the Environmental Protection Agency.

Advocacy groups
In the 1930s, chapters of the American Association of Scientific Workers (based loosely on a similar British organization) formed in various cities including Philadelphia, Boston and Chicago. Despite broad goals — promoting science for the benefit of society, stressing public science education, taking a moral stand against government and industry misuse of science — infighting and members’ opposing views limited the group’s effectiveness.

In the decades since, other broadly focused groups — for example, Science for the People (born out of a group started in 1969 by physicists frustrated by their professional society’s lack of action against the Vietnam War), the Union of Concerned Scientists, the American Association for the Advancement of Science — have picked up the banner, speaking out, circulating petitions and more. Single-issue groups such as the Environmental Defense Fund and the Council for Responsible Genetics have proliferated as well.

Protest marchers
Many scientists have traded pocket protectors for placards, hitting the streets as concerned scientist-citizens. Academic scientists frequently joined university students in rallies against the Vietnam War in the 1960s and early ’70s. Linus Pauling famously protested nuclear testing in a march outside the White House in 1962 (he was in town for a dinner with the Kennedys honoring Nobel laureates). Carl Sagan was one of hundreds arrested for protesting nuclear testing at a Nevada site in 1987. And plenty of scientist-citizens joined the inaugural Women’s March on Washington in January and the annual People’s Climate March (the 2017 one is scheduled for April 29, just a week after the March for Science).

But the March for Science feels different, say the science historians. Transforming concern into sign-toting, pavement-pounding, slogan-shouting activism is motivated by a collective — and growing — sense of outrage that the federal government is undermining, ignoring, even discarding and stifling science. That’s hitting many scientists not just in their livelihoods, but in the very fabric of their DNA. “Part of [President] Trump’s message is that science is not going to be thought of as part of a collective good that’s essential for decision making in a democracy,” Moore says. “We have not seen this outright rejection of science by the state.”

That rejection has come in many forms, says David Kaiser, a science historian at MIT. “It’s a cluster of issues: cutbacks in basic research across many domains, the censure and censorship regarding data collected by the government or the ability of government scientists to speak, and a range of threats to academic freedom and the research process generally.”

It’s a sign of the times, too, says Al Teich, a science policy expert at George Washington University in Washington, D.C. President Reagan, for example, slashed science in his budget in 1981. But many more people today are aware of science’s role in society, says Teich, the former director for science and policy programs at AAAS. This awareness may be fueling the upcoming march. “The number of people engaged and the range of scientists involved is not something that I’ve ever seen before.”

Measuring the impact of any of these efforts is difficult. They aren’t controlled laboratory experiments, after all. But one thing this march may do is spawn a new form of activism, says Moore: more scientists running for political office.

Beetles have been mooching off insect colonies for millions of years

Mooching roommates are an ancient problem. Certain species of beetles evolved to live with and leech off social insects such as ants and termites as long ago as the mid-Cretaceous, two new beetle fossils suggest. The finds date the behavior, called social parasitism, to almost 50 million years earlier than previously thought.

Ants and termites are eusocial — they live in communal groups, sharing labor and collectively raising their young. The freeloading beetles turn that social nature to their advantage. They snack on their hosts’ larvae and use their tunnels for protection, while giving nothing in return.

Previous fossils have suggested that this social parasitism has been going on for about 52 million years. But the new finds push that date way back. The specimens, preserved in 99-million-year-old Burmese amber, would have evolved relatively shortly after eusociality is thought to have popped up.

One beetle, Mesosymbion compactus, was reported in Nature Communications in December 2016. A different group of researchers described the other, Cretotrichopsenius burmiticus, in Current Biology on April 13. Both species have shielded heads and teardrop-shaped bodies, similar to modern termite-mound trespassers. Those adaptations aren’t just for looks. Like a roommate who’s found his leftovers filched one too many times, termites frequently turn against their pilfering housemates.

40 more ‘intelligence’ genes found

Smarty-pants have 40 new reasons to thank their parents for their powerful brains. By sifting through the genetics of nearly 80,000 people, researchers have uncovered 40 genes that may make certain people smarter. That brings the total number of suspected “intelligence genes” to 52.

Combined, these genetic attributes explain only a very small amount of overall smarts, or lack thereof, researchers write online May 22 in Nature Genetics. But studying these genes, many of which play roles in brain cell development, may ultimately help scientists understand how intelligence is built into brains.
Historically, intelligence research has been mired in controversy, says neuroscientist Richard Haier of the University of California, Irvine. Scientists disagreed on whether intelligence could actually be measured and if so, whether genes had anything at all to do with the trait, as opposed to education and other life experiences. But now “we are so many light-years beyond that, as you can see from studies like this,” says Haier. “This is very exciting and very positive news.”

The results were possible only because of the gigantic number of people studied, says study coauthor Danielle Posthuma, a geneticist at VU University Amsterdam. She and colleagues combined data from 13 earlier studies on intelligence, some published and some unpublished. Posthuma and her team looked for links between intelligence scores, measured in different ways in the studies, and variations held in the genetic instruction books of 78,308 children and adults. Called a genome-wide association study or GWAS, the method looks for signs that certain quirks in people’s genomes are related to a trait.

This technique pointed out particular versions of 22 genes, half of which were not previously known to have a role in intellectual ability. A different technique identified 30 more intelligence genes, only one of which had been previously found. Many of the 40 genes newly linked to intelligence are thought to help with brain cell development. The SHANK3 gene, for instance, helps nerve cells connect to partners.

Together, the genetic variants identified in the GWAS account for only about 5 percent of individual differences in intelligence, the authors estimate. That means that the results, if confirmed, would explain only a very small part of why some people are more intelligent than others. The gene versions identified in the paper are “accounting for so little of the variance that they’re not telling us much of anything,” says differential developmental psychologist Wendy Johnson of the University of Edinburgh.

Still, knowing more about the genetics of intelligence might ultimately point out ways to enhance the trait, an upgrade that would help people at both the high and low ends of the curve, Haier says. “If we understand what goes wrong in the brain, we might be able to intervene,” he says. “Wouldn’t it be nice if we were all just a little bit smarter?”

Posthuma, however, sees many roadblocks. Beyond ethical and technical concerns, basic brain biology is incredibly intricate. Single genes have many jobs. So changing one gene might have many unanticipated effects. Before scientists could change genes to increase intelligence, they’d need to know everything about the entire process, Posthuma says. Tweaking genetics to boost intelligence “would be very tricky.”

Babies categorize colors the same way adults do

Lots of newborn decorations come in black and white, so that young babies can better see the shapes. But just because it’s easier for babies to see bold blacks and whites doesn’t mean they can’t see color.

Very few studies of color vision in newborns exist, says Anna Franklin, a color researcher at the University of Sussex in England. “But those that have been conducted suggest that newborns can see some color, even if their color vision is limited,” she says. Newborns may not be great at distinguishing maroon from scarlet, but they can certainly see a vivid red.

But as babies get a little older, they get remarkably adept at discerning the world’s palette, new research shows. Babies ages 4 months to 6 months old are able to sort colors into five categories, researchers report in the May 23 Proceedings of the National Academy of Sciences.

These preverbal color capabilities offer insight into something scientists have long wondered: Without words for individual colors, how do babies divvy up the hues across the color wheel, telling when blue turns to green, for instance?

Along with Franklin and colleagues, psychologist Alice Skelton, also of the University of Sussex, bravely approached this question. The team coaxed 179 4- to 6-month-old babies to calmly and repeatedly look at two squares, each 1 of 14 various colors.

After showing babies two squares of the same color over and over, the researchers made one of the squares a new color. Gazing at the new hue longer was a sign that the baby recognized the color as new. In this meticulous way, the researchers worked their way around the entire color wheel for each baby.

The experiment required stamina, from both Skelton and the young participants. “Sometimes you can have whole weeks where the babies just don’t want to do it,” she says. Despite that, she found the process enjoyable: “Babies are nice people.”
Babies, like adults, bin hues into red, yellow, green, blue and purple, Skelton and her colleagues found. “Given the commonalities and patterns you see in the way that languages divide up the color spectrum, we did expect that we would see some evidence of these same patterns in the way babies divide up the spectrum,” Skelton says. “What was surprising, for me at least, was how nicely it fell out.”

That discernment comes even though the babies probably don’t know the words for the colors. This suggests that babies are most likely born with these categories preprogrammed in their brains. The babies in the study came from just one culture. But “we anticipate that infants from different cultures would categorize color similarly,” Franklin says.

The results offer an interesting window into what’s happening in a baby’s brain as she learns about her world. And the results also come with a gentle suggestion: Don’t restrict your newborn’s art to black and white. She may already harbor a fondness for blue.