To study Galápagos cormorants, a geneticist gets creative

Galápagos cormorants are the only flightless cormorant species. Their wings are too small to lift their heavy bodies. To trace the genetic changes responsible for the birds’ shrunken wings, Alejandro Burga needed DNA from the grounded bird and from a few related species. For the UCLA evolutionary geneticist, getting the right DNA was a yearlong effort.

After Galápagos cormorants (Phalacrocorax harrisi) split off from other cormorants, their wings shrunk to 19 centimeters long and their bodies grew to 3.6 kilograms, not a flying-friendly combination. Burga suspected he would have difficulty getting permission to collect DNA from the endangered birds. So he e-mailed “anybody who had ever published anything on cormorants” in the last 20 years, he says.
He found disease ecologist Patricia Parker of the University of Missouri-St. Louis who had collected blood from Galápagos cormorants in 2000 to monitor the spread of pathogens. Getting to the islands takes special permission, long flights and boat trips, but getting DNA from the meter-tall birds wasn’t hard.

“They’re sluggish, and they just sit there and look at you,” Parker says. She shared DNA that had been sitting in her lab refrigerator for more than a decade. Burga used it to reconstruct the cormorants’ genetic instruction book, or genome.

Next he needed comparison DNA from closely related species, such as the double-crested cormorant — a goose-sized waterbird with a broad wingspan. The bird is protected under a migratory bird treaty between the United States and Canada. Since Burga couldn’t just trap one and collect DNA, he got creative. He tried to extract DNA from preserved specimens at the Natural History Museum of Los Angeles County, but the genetic material was unusable. The San Diego Zoo sent samples of a too-distantly related great cormorant. An international bird rescue facility in Los Angeles notified him when someone found a dead cormorant on the beach. Burga rushed over, but the bird was a Brandt’s cormorant — also too far removed in the family tree to be of use.

One e-mail chain led to Paul Wolf, a U.S. Department of Agriculture wildlife disease biologist monitoring Newcastle disease virus in double-crested cormorants in Minnesota. With a special permit, Wolf removed one double-crested cormorant egg from a nest. The egg was at just the right stage of development — when the wings were beginning to grow — to determine which genes are active during wing development. Two down, two to go.

While on Alaska’s Middleton Island studying seabird parasites, Andrew Ramey of the U.S. Geological Survey collected two eggs from pelagic cormorants for Burga.
Burga also enlisted Claudio Verdugo, a molecular epidemiologist at Universidad Austral de Chile in Valdivia. Bird samples can’t be transported between countries because of fears of disease spread. So Burga sent chemicals and protocols to Verdugo, who took DNA from another species, the neotropic cormorant, and sent it to Burga.

With DNA from four cormorant species in hand, Burga and his newfound friends learned that the Galápagos cormorants’ stubby wings result, in part, from mutations in specific genes that encourage limb growth (SN: 6/11/16, p. 11). Burga is now studying how evolution grounded other birds.

Sometimes failure is the springboard to success

Some discoveries originate in failures. Lab failures, of course, can lead to serendipitous findings. Observations that fail to meet your expectations create space for a new idea to take hold. Imperfections — small failures — may tell volumes about how something was made or what it is made of. Exposing flaws in a theory inches scientists closer to a better one. Failure forces us to ask hard questions and look for new answers.
Our cover story follows the aftermath of a recent acknowledgment of a major fail: We haven’t yet taken a complete census of all minerals on Earth. Akin to the search to name all living species on the planet (but less of a moving target), a campaign is under way to add to the more than 5,000 known minerals, freelancer Sid Perkins writes in “Digging Carbon” (SN: 10/15/16, p. 18). It’s a kind of treasure hunt, as these minerals presumably have not yet been found because they are incredibly rare, perhaps existing at only a single location. Especially interesting to rock hounds are the scores of as yet unseen carbon-based minerals predicted to exist by a recent statistical analysis. Hidden in these unexplored gems might lie untold stories about how Earth’s carbon and water cycles have changed over the eons. Just as adding a new bird species to a life list is exciting for bird watchers, finding a new kind of mineral is what many rock hounds aspire to.
Another kind of failure may explain a mysterious missing star, Christopher Crockett reports in “Lost star may be failed supernova” (SN: 10/15/16, p. 8). A giant star, 25 to 30 times as massive as the sun, flared and then fizzled in 2009. Scientists now say it might be a failed supernova, a dying star that didn’t have quite the right stuff to explode and instead went from star straight to black hole. If the star is not just hiding somewhere in the dust, it’s a new cosmic character, a new type of behavior to watch for.

Imperfections in humans’ DNA help make each of us unique. These imperfections, viewed at a population scale, also offer a way (still imperfect in itself) to track ancestry, to get some idea of how human populations moved, mingled and changed in the deep past. In “The Hybrid Factor” (SN: 10/15/16, p. 22), Bruce Bower describes how recent DNA studies of ancient hominids are changing views of human evolutionary history. Early humans, the data show, mated with Neandertals and possibly other hominids, producing viable hybrid offspring. The research gives support to a longtime contention by some paleoanthropologists that certain ancient skeletons might represent human-Neandertal mixes. Further evidence for this point of view is now coming from studies of hybrid baboons and other modern species. Mixing species, it seems, was sometimes a success.

Examining the DNA of wide swaths of living people is also revising ideas about when early humans migrated out of Africa to settle the rest of the globe. Three new studies, described by Tina Hesman Saey in “One Africa exodus populated globe” (SN: 10/15/16, p. 6), suggest that the major ancestral mass migration from Africa occurred between 50,000 and 75,000 years ago. Those migrants succeeded in leaving their genetic mark on all of today’s non-Africans. Other evidence points to earlier, smaller migrations from Africa. Perhaps those were failures in a sense, failing to seed lasting populations in far-off outposts. But, perhaps those earlier, smaller scale treks were just the first steps toward success.

Solar panels are poised to be truly green

The solar panel industry has nearly paid its climate debt. The technology will break even in terms of energy usage by 2017 and greenhouse gas emissions by 2018 at the latest, if it hasn’t done so already, researchers calculate.

Building, assembling and installing solar panels consumes energy and produces climate-warming greenhouse gases. Once in use, though, the panels gradually reverse this imbalance by producing green energy.

The manufacturing process has also gotten greener over the last 40 years, environmental scientist Atse Louwen of Utrecht University in the Netherlands and colleagues report December 6 in Nature Communications. Each doubling of the combined energy-generating capacity of all solar panels has coincided with a 12 to 13 percent drop in the energy used during manufacturing and a 17 to 24 percent drop in their carbon footprint.

50 years ago, a millionth of a degree above absolute zero seemed cold

A common pin dropped on a table from a height of one-eighth of an inch generates about 10 ergs of energy, obviously a minuscule amount. That 10 ergs raises temperature, and even that tiny amount is “much too much” to be allowed in the experiment during which Dr. Arthur Spohr of the Naval Research Laboratory reached the lowest temperature yet achieved — within less than a millionth of a degree of absolute zero. — Science News, July 8, 1967.

Update
Today, scientists can make clouds of atoms at temperatures as low as 50 trillionths of a degree above absolute zero (SN: 5/16/15, p. 4). Late this year or early next year, NASA will launch its Cold Atom Laboratory to the International Space Station so scientists can study ultra­cold atoms reaching 100 trillionths of a degree or less. In orbit, gravity doesn’t drag atoms down, so the clouds can stay intact for scientists’ observations for up to 10 seconds — longer than is possible on Earth.

Brain activity helps build an alpha male

Boosting the activity of certain brain cells can help a mouse climb the social ladder.

Nerve cells in a region called the dorsomedial prefrontal cortex appear to control whether male mice are dominant or submissive to other males, researchers report in the July 14 Science. The finding adds to previous evidence that this brain region is involved in social interactions in mammals.

Like men flexing muscles or flaunting sports cars to win status, male mice compete to establish a social pecking order. When every mouse knows his place, there can be less social conflict in the long run, says James Curley, a neurobiologist at the University of Texas at Austin who wasn’t part of the study.
In dominance tests, researchers pitted mice head-to-head in a plastic tube too narrow for the animals to pass each other. With no way forward, the lower-ranking mouse eventually retreats, pushed out of the tube by the more dominant mouse.

Researchers recorded the activity of individual nerve cells, or neurons, in mice’s brains while they engaged in the tube test. A group of neurons in the dorsomedial prefrontal cortex fired faster when mice were pushing forward to claim space in the tube, and fired more slowly as the mice retreated, says study coauthor Hailan Hu, a neuroscientist at Zhejiang University in Hangzhou, China.

Hu’s team then manipulated the activity of those neurons and once again measured the mice’s performance in the tube. Mice with these neurons inactivated via druglike small molecules didn’t try as hard on the tube task and were more likely to lose the competition, the researchers found. Mice with those neurons amped up with light, on the other hand, won against opponents who had previously beaten them. If those mice won enough times in one day, they’d even keep their newly elevated status for two or three days.
Other studies have also suggested a role for the prefrontal cortex in controlling social dynamics in several species, including humans, Curley says. The new study adds detail by allowing the researchers to track how neural firing influences behavior immediately and then follow the effect over time.

However, the tube experiment measures dominance dynamics in pairs of mice, Curley points out, rather than in larger groups. “Whether the same mechanism underlies social dominance under all contexts is yet to be discovered,” he says.

Other factors, such as an animal’s size, can also influence its ability to win a fight. But Hu says that persistence is key, and that this group of neurons appears to affect that quality. “In risk tests, what’s important is how much effort you want to put into the competition,” she says. “Some mice quit easily.”

Mouse studies like this one don’t translate directly to humans. But they allow scientists to study the neurobiology of dominance behaviors in levels of detail that aren’t possible in human subjects.

The study tested only male mice. In the future, Hu wants to find out whether a similar brain mechanism holds for female mice, too.

This ancient sea worm sported a crowd of ‘claws’ around its mouth

Predatory sea worms just aren’t as spiny as they used to be.

These arrow worms, which make up the phylum Chaetognatha, snatch prey with Wolverine-like claws protruding from around their mouths. Researchers now report that a newly identified species of ancient arrow worm was especially heavily armed. Dubbed Capinatator praetermissus, the predator had about 50 curved head spines, more than twice as many as most of its modern relatives. Arranged in two crescents, the spines could snap shut like a Venus flytrap to catch small invertebrates.
More than 100 species of chaetognaths are alive today, but evidence of their ancient relatives is spotty. C. praetermissus lived a little more than 500 million years ago during the Cambrian Period and was identified from 49 specimens found in the fossil-rich Burgess Shale in British Columbia, the scientists report in the Aug. 21 Current Biology. Often, only arrow worms’ clawlike spines appear in the fossil record, without soft tissue. But many of the new finds had such tissue preserved, which provided clues to body size and shape.
C. praetermissus was different enough from other chaetognaths to be labeled not only a new species, but also a new genus. The animal was at the larger end of the scale for arrow worms: about 10 centimeters from spines to tail. And while today’s arrow worms have teeth to mash up their meal after capturing it, this ancient species appears to have been toothless.
But arrow worm teeth, which are found closer to the mouth, are quite similar to spines, says study coauthor Derek Briggs, a paleontologist at Yale University. Shorter spines seen on some ancient specimens could have functioned somewhat like teeth and might have been an early evolutionary step toward tooth development, Briggs proposes.

Inbreeding hurts the next generation’s reproductive success

ORLANDO, Fla. — Kissing cousins aren’t doing their children any evolutionary favors, some preliminary data suggest.

Mating with a close relative, known as inbreeding, reduces nonhuman animals’ evolutionary fitness — measured by the ability to produce offspring. Inbreeding, it turns out, also puts a hit on humans’ reproductive success, David Clark of the University of Edinburgh reported October 20 at the annual meeting of the American Society of Human Genetics.

Offspring of second cousins or closer relatives make up about 10 percent of the world population, Clark said. He and colleagues collected data on more than a million people from more than 100 culturally diverse populations and calculated the effect inbreeding has on traits related to evolutionary fitness.
Compared with outbred peers, offspring of first cousins have 1.4 fewer opposite-sex sexual partners, have sex for the first time 11 months later, have 0.11 fewer children and are 1.6 times as likely to be childless — all indicators of reduced reproductive ability. Childlessness was not because of a lack of opportunity to have kids, but rather because of fertility problems, Clark said. Children of first cousins are also 1 centimeter shorter, on average, than their peers and 0.84 kilograms lighter at birth. They also have five fewer months of education, presumably because they have less intellectual capacity than people with more distantly related parents, Clark said.

The more closely related the parents, the bigger the hit on reproductive fitness. Children of incest are 3 centimeters shorter and four times as likely to be childless than outbred peers, Clark said.