Ouster of McCarthy shows US division, 'demons dancing in riotous revelry'

When US House Speaker Kevin McCarthy was ousted on Tuesday from his leadership post, he became the shortest serving speaker since 1875. A handful of far-right Republicans joined Democrats and stripped the California Republican of the speaker's gravel with a 216-to-210 vote, after McCarthy worked with Democrats to pass a short-term funding bill to avert a government shutdown.

The ouster appears sudden, but is not surprising. It is no secret that some far-right Republicans hold radical ideas and refuse to cooperate with the Democrats in any form. Moreover, McCarthy's post was fragile from the very beginning. Matt Gaetz, who was among the Republicans to force a successful vote to vacate the chair on the House floor, repeatedly voted against McCarthy's bid for speaker in January. McCarthy ultimately secured the gavel after 15 rounds of voting over four days. To win the job, McCarthy had to agree to rules that made it easier to challenge his leadership. 

Democrats also viewed him as untrustworthy. He broke a May agreement on spending with President Joe Biden. Despite the fact that McCarthy worked with the Democrats to pause the US shutdown, he did not win the support of a single Democrat in Tuesday's vote. Democrats still believe that the presence of McCarthy, who in September ordered an impeachment inquiry into Biden, would hinder the political agenda of the Biden administration. They also believe that ousting McCarthy would trigger chaos within the Republicans and stymie the Republicans' moves against the Democrats. All in all, McCarthy had already become a "lame duck" speaker.

Zhang Tengjun, deputy director of the Department for American Studies at the China Institute of International Studies, told the Global Times that the ouster of McCarthy shows that against the backdrop of intensified bipartisan struggles, loyalty to the party triumphs everything, from the two parties' ability to make compromises and reach consensuses in the interests of the American public.

"It does not matter if one is the House speaker or not; what matters is which party he or she belongs to. This shows the extent to which the Democratic Party and the Republican Party divide," Zhang noted, adding that the US politics is now entering an era of "a host of demons dancing in riotous revelry."

McCarthy's ouster has been covered extensively by the US media, adding to the frenzy. But actually, it is the very representation of the US' so-called democratic politics. What normal democratic politics means is that the functioning of politics will not be affected by the removal of any single politician. But obviously, the ousting of McCarthy has plunged the House into chaos. And McCarthy's fate reflects how cooperating with the other party impacts political fortunes.

Wei Zongyou, a professor from the Center for American Studies, Fudan University, told the Global Times that from a deeper perspective, democratic politics is not all about elections, but about mutual compromise and restraint. 

"If the two parties cannot make compromises and exercise restraint, but turn different political opinions into an excuse to crusade against the other side or launch a life-and-death struggle, it may lead to a deadlock or even a civil war, and the only consequence is that the foundation of democratic politics will be destroyed," said Wei.

US democracy is facing a severe test as the 2024 presidential election looms. The Republicans have to tackle the current chaos and address this most recent leadership crisis. Without a powerful House speaker to bridge the divergences among the Republicans, it will affect the overall election strategy of the Republican Party and its advancement of its political agendas. 

The Democrats, sitting in the House chamber to watch the farce from afar, could laugh at the Republicans and accuse them of not being able to govern the country and being the reason behind ongoing political gridlock. But they also need to be aware that if the Republicans refuse to cooperate in any issue, the Biden administration's political agenda may also suffer. A chaotic situation next year does not necessarily bode well for the Democratic Party, and the outcome of the 2024 election remains uncertain and unpredictable.

Anti-COVID-19 nasal spray appears effective against infection: preliminary reports

SA58, a new anti-COVID-19 monoclonal antibody nasal spray, has shown favorable efficacy in preventing COVID-19 infection, said two preliminary reports.

To test the efficacy and safety of the spray, which was developed by China's Sinovac Life Sciences Co, clinical studies were conducted with medical personnel working in designated COVID-19 hospitals and makeshift hospitals in the city of Hohhot in North China's Inner Mongolia Autonomous Region, as well as with voluntary workers from 21 construction sites in Beijing.

The effectiveness of SA58 in preventing infection among Hohhot's medical staff was as high as 77.7 percent, and SA58 was able to lower the risk of COVID-19 infection by 61.83 percent among the study participants in Beijing, said the research results published on medRxiv, a preprint server for health sciences.

While the data has shown satisfactory efficacy and safety of SA58 in reducing symptomatic COVID-19 infections in healthy adults with early exposure within 72 hours, it cannot yet represent other kinds of groups including the elderly and people with underlying diseases.

SA58 has advantages over intramuscular injections, as it is less invasive and more acceptable to recipients. It is also convenient for medical personnel and other high-risk groups to use, said the research.

Photo agency VCG under fire for claiming compensation from photographer who used own photos

Major Chinese photo agency Visual China Group (VCG) has come under fire after it sought 86,500 yuan ($11,853) from an astrophotographer for posting 173 photos that VCG claims to own the copyright to. However, all the pictures were taken by the photographer himself and never uploaded to VCG. The photo agency has now found itself caught in the middle of a huge controversy surrounding its history of copyright over-claiming.

Although VCG later stated that they obtained legal licenses for these works from other platforms, the photographer refused to accept the explanation. Stocktrek Images, to which Dai uploaded these photos, said on Wednesday that it has contacted VCG and demanded it remove the photos, Chinese media outlets reported.

As the two sides continue to tussle, the Chinese internet is once again buzzing with discussion about copyright ownership. 

Dai Jianfeng, also known as Jeff Dai, is a specialist in astronomical photography with a fanbase of over 2 million users on his personal Sina Weibo account. On Tuesday afternoon, he fired an accusation at VCG, saying it was seeking compensation from him for using his own photos, which he described as "outrageous."

"Today, I got a call from VCG saying that my public post had used 173 of their photos in a manner that breaches their copyright and that I will have to pay them over 80,000 yuan," Dai wrote on his Sina Weibo account on Tuesday afternoon.

When Dai looked into the claim, he found that all the "infringing photos" turned out to be photos he had taken himself. 

"I have never worked with VCG on these photos and never uploaded them to their gallery," Dai said, questioning why VCG would own the copyright to the photos and ask him to pay compensation.

According to screenshots Dai posted of the email he claims was sent to him by VCG, the photo agency said that Dai made unauthorized use of the images, several of which were taken in 2018. VCG offered two solutions, a partnership between the parties for 300 yuan per photo, or a settlement between the parties in which Dai would pay 500 yuan for each photo.

These photos can indeed be downloaded from the VCG gallery. Author information for some of the images was listed as Jeff Dai/Stocktrek Images/Getty Creative.

Dai then demanded VCG provide an explanation for "where it obtained the photos that were sold illegally" and "how much illegal profit it has made."

VCG responded on Tuesday night by claiming that the images were licensed by Dai to the stock photo library Stocktrek Images for sale, which in turn licensed them to Getty Images for sale. VCG is the exclusive partner of Getty Images in the Chinese mainland and therefore has the right to sell these images.

The chain of sales authorizations for the images in question is clear and complete, said VCG, promising to continue communicating with the photographer to "properly address the misunderstanding."

However, Dai again refuted VCG's claims on Wednesday, stating that Stocktrek Images had confirmed to him that VCG does not have the right to sell his work, nor does it have any copyrights to his work. Getty Images also does not have the right to re-license his work.

"There is no misunderstanding here," he said. 

"To this day, you [VCG] continue to illegally sell my work online, falsely claiming to me and others that you own the copyright to it. Please stop your infringing behavior immediately!"

According to the information disclosed by both parties so far, the copyright of the relevant pictures is owned by the photographer, Yue Shenshan, a Beijing-based lawyer, told the China News Service. 

If what Dai disclosed is true, then Getty Images has no right to sublicense the images, which means VCG does not have the right to sell the images and its actions have violated the photographer's copyright, said Yue.

After Dai exposed this incident, many netizens voiced support in his defense, noting that the over-assertion of copyrights by big platforms like VCG has been a long-standing problem.

Some netizens have pointed out that neither side has yet shown concrete evidence to show whether or not Dai ceded the copyrights to the photos when he sold his work.

However, Dai had revealed in a Sina Weibo post in 2018 that he had signed contracts with VCG. It is not clear whether the content of the signing between the two parties is related to the photos in this incident.

Whether or not the photographer's own use of his or her work is infringing depends on the specific agreement between the two parties when the photographer licensed his or her work to the photo agencies, Yue said.

VCG has stirred controversy on several occasions over past years. In 2019, it claimed copyright over the first-ever photo of a black hole as well as the Chinese flag and national emblem, prompting an online debate on Chinese copyright practices. After the exposure of the latest controversy, many companies have also revealed that their company logos have been listed as copyrighted VCG images.

VCG and its subsidiaries filed more than 2,000 lawsuits alleging copyright violations in 2017 and 2018 alone.

Lost memories retrieved for mice with signs of Alzheimer’s

Using flashes of blue light, scientists have pulled forgotten memories out of the foggy brains of mice engineered to have signs of early Alzheimer’s disease. This memory rehab feat, described online March 16 in Nature, offers new clues about how the brain handles memories, and how that process can go awry.

The result “provides a theoretical mechanism for reviving old, forgotten memories,” says Yale School of Medicine neurologist Arash Salardini. Memory manipulations, such as the retrieval of lost memories and the creation of false memories, were “once the realm of science fiction,” he says. But this experiment and other recent work have now accomplished these feats, at least in rodents (SN: 12/27/14, p. 19), he says.
To recover a lost memory, scientists first had to mark it. Neuroscientist Susumu Tonegawa of MIT and colleagues devised a system that tagged the specific nerve cells that stored a memory — in this case, an association between a particular cage and a shock. A virus delivered a gene for a protein that allowed researchers to control this collection of memory-holding nerve cells. The genetic tweak caused these cells to fire off signals in response to blue laser light, letting Tonegawa and colleagues call up the memory with light delivered by an optic fiber implanted in the brain.

A day after receiving a shock in a particular cage, mice carrying two genes associated with Alzheimer’s seemed to have forgotten their ordeal; when put back in that cage, these mice didn’t seem as frightened as mice without the Alzheimer’s-related genes. But when the researchers used light to restore this frightening memory, it caused the mice to freeze in place in a different cage. (Freezing in a new venue showed that laser activation of the memory cells, and not environmental cues, caused the fear reaction.)

The fact that this memory could be pulled out with light helps clarify the source of memory trouble for people with Alzheimer’s, Tonegawa says. In this experiment, the mice appeared able to form and store a memory but not call it up. “It’s a retrieval problem, not a storage problem,” Tonegawa says.

That’s in line with what many clinicians now believe to be happening in early Alzheimer’s, says Salardini. People in the early stages of the disease seem able to create new memories, but then rapidly forget them, he says. Memories can sometimes be strengthened with reminders and clues from the environment, suggesting that they are “somewhere in there,” but not retrievable, he says.

Further experiments with the mice showed that the fear memory could be strengthened by forcing it to appear multiple times. This memory boot camp worked because it boosted the number of docking sites on memory-holding nerve cells in the mice with Alzheimer’s-related genes. Usually, these docking sites — knobs called dendritic spines that receive messages from other nerve cells — become scarcer with age. To counter that, Tonegawa and colleagues used light to repeatedly activate nerve cells that in turn activate the memory-holding cells. Compared with mice that didn’t get this strengthening treatment, mice with the Alzheimer’s genes that underwent this process were more fearful of the cage where they had received a shock, even six days later.
Tonegawa cautions that the results are experimental. “We have not done anything to cure human Alzheimer’s patients,” he says. And the methods, which rely on viruses to genetically engineer brain cells and optic fibers implanted in the brain, are not currently feasible for people.

But insights gained from this experiment, and others like it, do help clarify how memory works in people, says neuroscientist Christine Denny of Columbia University. “If we can understand how the process of memory retrieval is compromised and where it is impaired, then we can begin to develop treatments to target those processes or circuits.”

New sky map charts previously unknown gamma-ray sources

SALT LAKE CITY — A new map of the sky charts the origins of some of the highest energy photons ever detected. Researchers from the High-Altitude Water Cherenkov Observatory released their first year of observations of gamma rays, ultrahigh-energy light particles blasted in our direction from some of the most extreme environments in the universe.

The researchers found 40 gamma-ray sources, a quarter of which hadn’t previously been identified, they reported April 18 at an American Physical Society meeting. The map is “revealing new information about nature’s particle accelerators,” said Brenda Dingus, a leader of the HAWC collaboration. These accelerators include the relics of dead stars, such as supernova remnants, and active galaxies that shoot out blasts of particles, known as blazars.
From its perch on the edge of a dormant volcano in Mexico, HAWC detects gamma rays using 300 tanks of water, which cover an area the size of four football fields and register faint light signals from showers of particles produced when gamma rays slam into Earth’s atmosphere.

The team found new sources in areas that had already been searched by other high-energy gamma-ray telescopes. “That’s a little perplexing,” said Dingus. The discrepancy could be due to the fact that HAWC observes higher energy gamma rays, or that the sources are too spread out for the other telescopes to find.

In a region near a previously known gamma-ray source, the scientists found two other potential sources. They nicknamed the group “the executioner” — the bright gamma ray hot spots in the map bore some resemblance to a sinister human figure. If the name sticks, Dingus said, “it would be the first gamma-ray constellation.”

U.S. oil and gas boom behind rising ethane levels

A single oil and gas field centered in North Dakota spews 1 to 3 percent of all global ethane emissions, about 230,000 metric tons annually. Based on that snapshot, researchers argue that the recent U.S. oil and gas boom is chiefly to blame for rising levels of ethane, a component of natural gas that can damage air quality and warm the climate.

Flying air-sniffing planes over the Bakken shale in May 2014, atmospheric scientist Eric Kort of the University of Michigan in Ann Arbor and colleagues discovered that ethane emissions were 10 to 100 times larger than expected. The region has been a major contributor to a U-turn in ethane emissions, the researchers report online April 26 in Geophysical Research Letters. Global atmospheric ethane levels declined from 14.3 million tons in 1984 to around 11.3 million tons in 2010. In recent years, however, ethane levels have increased.

Assuming that the Bakken shale’s emissions grew over time as production ramped up over the last few years, the researchers projected the region’s ethane emissions back in time. In 2012, yearly ethane emissions from the shale were large enough to cancel out half of the annual long-term decline in global ethane emissions, the researchers estimate.Additional sources, such as other oil and gas fields, contributed the rest of the increase.

Ethane typically stays in the atmosphere only around two months before breaking apart in chemical reactions. But in that short time, the gas worsens near-ground air quality and contributes to global warming both directly as a greenhouse gas and indirectly by increasing the amount of time methane, an even more potent greenhouse gas, remains in the atmosphere.

Here’s where 17,000 ocean research buoys ended up

Garbage in, garbage out. But where does all that garbage go? In the oceans, floating bits of debris — everything from plastic bags to Legos — tend to ride along ocean currents to a common destination: one of five major whirling ocean gyres, also known as the ocean garbage patches. Researchers recently got a new look at these gyres thanks to a visualization that combined 35 years’ worth of data on another thing humans drop into the oceans: scientific buoys. The visualization was a finalist in the Data Stories competition sponsored by the American Association for the Advancement of Science. The winners were announced May 5.
Free-floating buoys, released by the National Oceanic and Atmospheric Administration, track temperature, saltiness and other ocean properties. Experts at NASA’s Scientific Visualization Studio combined the movements of more than 17,000 buoys to illustrate the motions of the oceans (see animation below). The buoys start off scattered across the oceans, with some in neat lines that follow the paths of buoy-deploying research vessels. From this chaos, the buoys begin to migrate into clusters. Over time, most drop off the grid and disappear, but some buoys eventually end up in one of the ocean garbage patches.

The garbage patches aren’t floating landfills of intact soda bottles and yogurt cups. The gyres are instead speckled with tiny plastic bits smaller than grains of rice, as many as 100,000 per square kilometer. All that plastic can end up in fish and serves as a foundation for microbe colonies (SN: 2/20/16, p. 20).

Fruit fly’s giant sperm is quite an exaggeration

Forget it, peacocks. Nice try, elk. Sure, sexy feathers and antlers are showy, but the sperm of a fruit fly could be the most over-the-top, exaggerated male ornamentation of all.

In certain fruit fly species, such as Drosophila bifurca, males measuring just a few millimeters produce sperm with a tail as long as 5.8-centimeters, researchers report May 26 in Nature. Adjusted for body size, the disproportionately supersized sperm outdoes such exuberant body parts as pheasant display feathers, deer antlers, scarab beetle horns and the forward-grasping forceps of earwigs.
Fruit flies’ giant sperm have been challenging to explain, says study coauthor Scott Pitnick of Syracuse University in New York.

Now he and his colleagues propose that a complex interplay of male and female benefits has accelerated sperm length in a runaway-train scenario.

Males with longer sperm deliver fewer sperm, bucking a more-is-better trend. Yet, they still manage to transfer a few dozen to a few hundred per mating. And as newly arrived sperm compete to displace those already waiting in a female’s storage organ, longer is better. Fewer sperm per mating means females tend to mate more often, intensifying the sperm-vs.-sperm competition. Females that have the longest storage organs, which favor the longest sperm, benefit too: Males producing greater numbers of megasperm, the researchers found, tend to be the ones with good genes likely to produce robust offspring. “Sex,” says Pitnick, “is a powerful force.”
Among courtship-oriented body ornaments and weapons (red), the giant sperm of fruit flies (Drosophila) are the most disproportionately exaggerated, according to an index adjusted for body size. Higher numbers (bottom axis) indicate greater exaggeration.

Francis Crick’s good luck revolutionized biology

When Francis Crick was 31, he decided he needed to change his luck. As a graduate student in physics during World War II, his research hadn’t gone so well; his experiment was demolished by a bomb. To beat the war, he joined it, working on naval warfare mines for the British Admiralty.

After the war, he sought a new direction.

“There are lots of ways of being unlucky,” Crick told me in an interview in 1998. “One is sticking to things too long. Another is not adventuring at all.”

He decided to adventure.

Molecular biologists everywhere will celebrate that decision on June 8, the centennial of Crick’s birth, in Weston Favell, Northampton, England, in 1916.

“Crick was one of the central figures, one might say the central figure, in the molecular revolution that swept through biology in the latter half of the 20th century,” science historian Robert Olby wrote in a biographical sketch.

In 1953, at the University of Cambridge, Crick and his collaborator James Watson figured out how life’s most important molecule, deoxyribonucleic acid, was put together. DNA, the stuff that genes are made of, became the most famous of biological molecules. Today the image of its double helix structure symbolizes biology itself. It would be easy to make the case that discovering DNA’s structure was the single greatest event in the history of biology — and always will be. In 1962, Watson and Crick won the Nobel Prize for their work (which was, of course, greatly aided by X-ray diffraction imagery from Rosalind Franklin, who unfortunately died before the Nobel was awarded).

Crick’s DNA adventure began at a time when molecular biology was ripe for revolution. But Crick didn’t know that. His choice was lucky.
“I had no idea when I started that molecular biology would advance so fast,” he said. “No idea at all.”

In fact, Crick very nearly chose a different path. His interest in genes was equaled by his curiosity about the brain. Both were topics that he liked to gossip about.

“But I didn’t know enough about either subject,” he said. He just knew a little bit more about biochemistry.

“I thought ‘Well look, I have a training in physics and I know a bit of chemistry, I don’t know anything about the brain.’” So he decided it would be more sensible to start with genes.

“I thought that problem of what genes were and how they replicate and what they did would last me the rest of my life,” he said.

As it happened, genes did occupy him for a couple of decades. Crick made major contributions to elucidating the genetic code during that time. But he never forgot his interest in the brain, and more specifically, consciousness. In the 1970s, he moved from England to California, where he began consciousness research in San Diego at the Salk Institute for Biological Studies.

Consciousness turned out to be a much tougher problem than understanding genes. In retrospect, Crick could see why.

With genetics, “what really made the thing was the simplicity of the double helix. It wrote the whole research program,” he said. “It probably goes back to near the origin of life, when things had to be simple.” Consciousness appeared on the scene only much later, after the evolution of the brain’s vast complexity.

Nevertheless, Crick perceived parallels between genetics and consciousness as subjects for scientific inquiry. As the 20th century came to an end, he mused that consciousness as a concept remained vague — researchers did not all agree about what the word meant. The situation with genes had at one time been similar.

“In a sense people were just as vague about what genes were in the 1920s as they are now about consciousness,” Crick said. “It was exactly the same. The more professional people in the field, which was biochemistry at that time, thought that it was a problem that was too early to tackle. And I think they were right in the ’20s.”

At the end of the 20th century, research on consciousness found itself in much the same state.

“Everybody agrees that it’s an interesting question,” Crick said, “but there are two points of view among scientists: One is that it isn’t a scientific question and is best left to philosophers. And the other one is that, even if it’s a scientific question, it’s too early to tackle it now.”

Crick tackled it anyway. Until his death in 2004, he worked vigorously on the subject with his collaborator Christof Koch, making substantial inroads into identifying the brain activity associated with conscious awareness. Crick was not lucky enough to solve the problem of consciousness, but he perhaps brought the arrival of that solution a little closer.

Ocean plankton held hostage by pirate viruses

When plankton on the high seas catch a cold, the whole ocean may sneeze. Viruses hijacking these microbes could be an important overlooked factor in tracing how living things trap — or in this case, fail to trap — the climate-warming gas carbon dioxide.

Plants and other organisms that photosynthesize use energy from the sun to capture CO2 for food. The most abundant of these photosynthesizers on the planet are marine cyanobacteria with hardly any name recognition: Synechococcus and Prochlorococcus.
Now, for the first time, a study looks in detail at what happens when some of the abundant viruses found in the sea infect these microbes. Two viruses tested in the lab hijacked cell metabolism, allowing photosynthesis to continue but shunting the captured energy to virus reproduction. The normal use of that energy, capturing CO2, largely shuts down, David Scanlan of the University of Warwick in England and colleagues report online June 9 in Current Biology. As a result, people could be overestimating by 10 percent the amount of CO2 that photosynthesis in the oceans captures.

On any given day, 1 to 60 percent of these plankton may have picked up a viral infection, researchers have estimated. That means that between 0.02 and 5.39 petagrams of carbon — up to 5.39 billion metric tons — may not be captured by marine organisms a year. The high end of that scenario is equivalent to 2.8 times the CO2 routinely captured annually by all the planet’s salt marshes, coral reefs, estuaries, sea grass meadows and seaweeds put together.

Synechococcus and Prochlorococcus plankton “are organisms that you’ve never heard of but you really should have,” says Adam Martiny of the University of California, Irvine. He studies the same kinds of plankton but wasn’t involved in the new virus research, and what he appreciates about it is the intriguing biology of viral manipulation the new work has uncovered.

Until now, Scanlan says, the prevailing view was that while infected plankton were still alive, they were probably carrying on normal photosynthesis. As early as 2003, researchers had clues that the viruses attacking these tiny marine organisms might manipulate photosynthesis in some way, perhaps keeping the process running in an infected cell. These viruses have genes for proteins used in photosynthesis, even though a virus doesn’t even have its own cell much less a way to photosynthesize.

What the viruses are doing, Scanlan and his colleagues have now shown, is subverting their victim’s photosynthesis. Energy capture, the part of photosynthesis directly involved with light, goes on as usual; the cells carry out the routine electron transport for catching energy. But instead of using those sizzling electrons to capture CO2 and turn it into carbohydrates for basic cell metabolism, the viruses shut down this process (called carbon fixation). The light reactions are the ones that researchers normally measure to estimate how much carbon photosynthesis captures in the oceans, but the covert viral shunting means that estimate could be too high.

Scanlan cautions that this is just the beginning of working out the numbers and possible climate effects of virus diseases for these organisms. Whatever the current effects of this takeover turn out to be outside the lab, they may intensify as the climate changes. Synechococcus and Prochlorococcus are “projected to be winners in the new, warmer oceans” and may become even more numerous, Martiny says. And what’s good for them may also increase the abundance of the viral pirates that hijack them.