New technique shows how 2-D thin films take the heat

High-energy particle beams can reveal how 2-D thin sheets behave when the heat is cranked up.

Researchers have devised a way to track how these materials, such as the supermaterial graphene, expand or contract as temperatures rise (SN: 10/3/15, p. 7). This technique, described in the Feb. 2 Physical Review Letters, showed that 2-D semiconductors arranged in single-atom-thick sheets expand more like plastics than metals when heated. Better understanding the high-temp behaviors of these and other 2-D materials could help engineers design sturdy nano-sized electronics.
Commonly used silicon-based electronics are “hitting a brick wall,” regarding how much smaller they can get, says Zlatan Aksamija, an electrical engineer at the University of Massachusetts Amherst not involved in the work. Materials made of ultrathin, 2-D films could be ideal for building the next generation of tinier devices.

But electronics warm up as electric current courses through them. If 2-D materials in a nanodevice expand or shrink at different rates from each other when heated, that could change the device’s electronic properties — such as how well it conducts electricity, says Antoine Reserbat-Plantey, a physicist at the Institute of Photonic Sciences in Barcelona not involved in the research. It’s crucial to know how the thin films react to higher temps.

The new method uses a scanning transmission electron microscope to bombard a film with a beam of high-energy particles. That particle beam stirs up electrons in the 2-D sheet, making the electrons swish back and forth through the material. The collective oscillation, called a plasmon, occurs at a frequency that depends on the material’s density, explains Matthew Mecklenburg, a physicist at the University of Southern California in Los Angeles who was not involved in the work.

The plasmon frequency affects how much energy the particles of the microscope beam lose as they streak through the 2-D material: the higher the frequency, the denser the material, and the more energy that is sapped from the beam. By using another instrument to measure the energies of beam particles after they’ve passed through the 2-D material, researchers can discern the material’s density — and track how that density changes as they turn up the heat.
Robert Klie, a physicist at the University of Illinois at Chicago, and colleagues used this technique on samples of graphene, which is made of carbon atoms, and four 2-D semiconductors made of transition metal and chalcogen atoms. (Chalcogen elements are found in group 16 on the periodic table and include sulfur and selenium). These materials were arranged in sheets from a single atom to a few atoms thick. The team measured the density of each sample at eight temperatures between about 100° and 450° Celsius. That allowed the scientists to calculate how much each material expanded or contracted per degree of temperature increase.

These measurements revealed that the thinnest structures undergo more significant size changes than thicker sheets: A single layer of graphene, which contracts when heated, shrinks more than materials composed of a few graphene layers. The 2-D semiconductors expand at higher temps, but those made of one-atom-thick sheets swell more than semiconductors a few atoms thick. In fact, the heat response of the single-atom-thick semiconductors is “more like [that] of a plastic than a metal,” Mecklenburg says.

This finding may indicate that, like plastics, some 2-D semiconductors have low melting temperatures, which could affect how or whether they’re used in future electronics.

Shipping noise can disturb porpoises and disrupt their mealtime

Harbor porpoises are frequently exposed to sounds from shipping vessels that register at around 100 decibels, about as loud as a lawnmower, scientists report February 14 in Proceedings of the Royal Society B. Sounds this loud can cause porpoises to stop echolocation, which they use to catch food.

While high-frequency submarine sonar has been found to harm whales (SN: 4/23/11, p. 16), low-frequency noise from shipping vessels is responsible for most human-made noise in the ocean, the researchers say. Porpoises have poor hearing in lower frequencies, so it was unclear if they were affected.

In the first study to assess the effects of shipping vessel noise on porpoises, researchers tagged seven harbor porpoises off the coast of Denmark with sensors that tracked the animals’ movement and echolocation usage in response to underwater noise over about 20 hours.

One ship created a 130 decibel noise — twice as loud as a chainsaw — that caused a porpoise to flee at top speed. These initial results indicate that ship noise could affect how much food porpoises hunt and consume.

When it comes to baby’s growth, early pregnancy weight may matter more than later gains

When you’re pregnant, you spend a lot of time on scales. Every doctor appointment begins with hopping (or waddling) up for a weigh-in. Health care workers then plot those numbers into a (usually) ascending curve as the weeks go by.

A morbid curiosity about exactly how enormous you’re getting isn’t what’s behind the scrutiny. Rather, the pounds put on during pregnancy can give clues about how the pregnancy is progressing.

Weight gain during pregnancy is tied to the birth weight of the new baby: On average, the more weight that mothers gain, the bigger the babes. If a mother gains a very small amount of weight, her baby is more likely to be born too early and too small. And if a mother gains too much weight, her baby is at risk of being born large, which can cause trouble during delivery and future health problems for babies.
But staying within the recommended weight range is hard. Very hard. A 2017 review of studies that, all told, looked at over a million pregnancies around the world showed that the vast majority of women fell outside the weight gain sweet spot. Twenty-three percent of those women didn’t gain enough, and 47 percent gained too much, the review, published in JAMA, shows.

But here’s the tricky part. Many studies on weight gain during pregnancy and babies’ outcomes start monitoring women who are already pregnant. That means that these studies rely on women to remember, and report correctly, their prepregnancy weight. And that might not always be accurate.

A new study offers a more nuanced look at pregnancy weight gain. The results, taken from the pregnancies of more than 1,000 Chinese women, suggest that when it comes to babies’ birth weights, the timing of maternal weight gain matters, a lot.
Overall, a woman’s weight gain during pregnancy was clearly linked to baby’s weight at birth, the researchers found. But within those 40 weeks, there were big differences. Prepregnancy weight and weight gain during the first half of pregnancy are the measurements that matter, researchers suggested in the February JAMA Pediatrics. Weight gain after 18 weeks wasn’t linked to babies’ birth weight, researchers note.

Similar results, described in PLOS ONE, come from a 2017 study of Vietnamese women: Weight gain during the first half of pregnancy had two to three times the influence on infant birth outcomes than weight gain in the second half of pregnancy. It’s worth mentioning that nearly three-quarters of the Vietnamese women gained too little weight during pregnancy. And on the whole, the Chinese women were lean before they got pregnant, scenarios that make it hard to translate those findings to women who began pregnancy overweight.

Still, the point remains that weight gain during the first half of pregnancy (and even before it) may have outsized influence on the baby’s growth. Pregnancy — and the growing baby — change so much from week 0 to week 40. It makes sense that all pregnancy weight gain isn’t all one and the same.

It’s nice to see these complexities emerge as scientists get more fine-grained data. There’s still so much we don’t know about how weight gain during pregnancy, as well as other aspects of the in utero environment, can shape babies’ future health.

Here’s when the universe’s first stars may have been born

For the first time, scientists may have detected hints of the universe’s primordial sunrise, when the first twinkles of starlight appeared in the cosmos.

Stars began illuminating the heavens by about 180 million years after the universe was born, researchers report in the March 1 Nature. This “cosmic dawn” left its mark on the hydrogen gas that surrounded the stars (SN: 6/8/02, p. 362). Now, a radio antenna has reportedly picked up that resulting signature.
“It’s a tremendously exciting result. It’s the first time we’ve possibly had a glimpse of this era of cosmic history,” says observational cosmologist H. Cynthia Chiang of the University of KwaZulu-Natal in Durban, South Africa, who was not involved in the research.

The oldest galaxies seen directly with telescopes sent their starlight from significantly later: several hundreds of millions of years after the Big Bang, which occurred about 13.8 billion years ago. The new observation used a technique, over a decade in the making, that relies on probing the hydrogen gas that filled the early universe. That approach holds promise for the future of cosmology: More advanced measurements may eventually reveal details of the early universe throughout its most difficult-to-observe eras.

But experts say the result needs additional confirmation, in particular because the signature doesn’t fully agree with theoretical predictions. The signal — a dip in the intensity of radio waves across certain frequencies — was more than twice as strong as expected.

The unexpectedly large observed signal suggests that the hydrogen gas was colder than predicted. If confirmed, this observation might hint at a new phenomenon taking place in the early universe. One possibility, suggested in a companion paper in Nature by theoretical astrophysicist Rennan Barkana of Tel Aviv University, is that the hydrogen was cooled due to new types of interactions between the hydrogen and particles of dark matter, a mysterious substance that makes up most of the matter in the universe.
If the interpretation is correct, “it’s quite possible that this is worth two Nobel Prizes,” says theoretical astrophysicist Avi Loeb of Harvard University, who was not involved with the work. One prize could be given for detecting the signature of the cosmic dawn, and another for the dark matter implications. But Loeb expresses reservations about the result: “What makes me a bit nervous is the fact that the [signal] that they see doesn’t look like what we expected.”

To increase scientists’ confidence, the result must be verified by other experiments and additional tests, says theoretical cosmologist Matias Zaldarriaga of the Institute for Advanced Study in Princeton, N.J. Several other efforts to detect the signal are already under way.

Experimental cosmologist Judd Bowman of Arizona State University in Tempe and colleagues teased out their evidence for the first stars from the impact the light had on hydrogen gas. “We don’t see the starlight itself. We see indirectly the effect that the starlight would have had” on the cosmic environment, says Bowman, a collaborator on the Experiment to Detect the Global Epoch of Reionization Signature, EDGES, which detected the stars’ traces.
Collapsing out of dense pockets of hydrogen gas early in the universe’s history, the first stars flickered on, emitting ultraviolet light that interacted with the surrounding hydrogen. The starlight altered the proportion of hydrogen atoms found in different energy levels. That change caused the gas to absorb light of a particular wavelength, about 21 centimeters, from the cosmic microwave background — the glow left over from around 380,000 years after the Big Bang (SN: 3/21/15, p. 7). A distinctive dip in the intensity of the light at that wavelength appeared as a result.

Over time, that light’s wavelength was stretched to several meters by the expansion of the universe, before being detected on Earth as radio waves. Observing the amount of stretching that had taken place in the light allowed the researchers to pinpoint how long after the Big Bang the light was absorbed, revealing when the first stars turned on.

Still, detecting the faint dip was a challenge: Other cosmic sources, such as the Milky Way, emit radio waves at much higher levels, which must be accounted for. And to avoid interference from sources on Earth — like FM radio stations — Bowman and colleagues set up their table-sized antenna far from civilization, at the Murchison Radio-astronomy Observatory in the western Australian outback.

Scientists hope to use similar techniques with future, more advanced instruments to map out where in the sky stars first started forming, and to reveal other periods early in the universe’s history. “This is really the first step in what’s going to become a new and exciting field,” Bowman says.

A new way to make bacteria glow could simplify TB screening

A new molecule that reveals active tuberculosis bacteria in coughed-up mucus and saliva could simplify TB diagnoses and speed up tests for detecting strains of the disease that are resistant to drugs.

This synthetic molecule is a modified version of a sugar that TB bacteria consume to help build their cell walls. The sugar is tagged with a dye that lights up under a fluorescent microscope — but only if the dye isn’t surrounded by water. Dubbed DMN-Tre, the hybrid molecule stays dark until it enters a fatty, water-repellant layer in a TB bacterium’s cell wall, where it starts to glow, researchers report online February 28 in Science Translational Medicine.
Standard tests use dyes that stain a bunch of different bacteria, so technicians have to bleach the dye off everything except the TB cells, says Sumona Datta, a tuberculosis researcher at Imperial College London not involved in the work. But that chemical washing is time-consuming and prone to error. Since DMN-Tre only glows when it’s gobbled up by TB or one of its close relatives, the molecule could offer a simpler, more reliable diagnosis, she says.
Tuberculosis killed 1.7 million people worldwide in 2016, according to the World Health Organization. And rampant resistance to drugs is making the disease harder to fight.
Chemical biologist Carolyn Bertozzi, a Howard Hughes Medical Institute investigator at Stanford University, and colleagues tested the new molecule on mucus-saliva mixtures hacked up by 16 people with tuberculosis. The molecule flagged TB microbes in the samples after a couple of hours, and it revealed similar amounts of bacteria as the standard staining technique — without the hassle of post-dye chemical washing.

“That’s pretty impressive,” says Jianghong Rao, a chemist and radiologist at Stanford not involved in the work. But DMN-Tre needs to be tested in a larger clinical trial before being ready for prime time, he says.

The new TB screening technique may also have an edge in checking whether patients respond to treatment, says Eric Rubin, a microbiologist at Harvard University. Because the molecule only lights up when eaten by healthy, hungry TB bacteria, it won’t flag microbes that have been crippled or killed by antibiotics as typical tests do. So if there are still lots of glowing microbes in phlegm from patients treated with an antibiotic, a doctor knows to try a different drug.

While current drug-resistance tests can take weeks or months, DMN-Tre reveals how drug-treated bacteria are faring within a few hours. “That’s tremendously exciting,” says Carlton Evans, also a tuberculosis researcher at Imperial College London not involved in the study. Speedy drug-resistance tests (SN Online: 12/7/14) could help researchers predict sooner which antibiotics stand the best chance of taking down TB bacteria.

Some meteorites contain superconducting bits

LOS ANGELES — In the search for new superconductors, scientists are leaving no stone — and no meteorite — unturned. A team of physicists has now found the unusual materials, famous for their ability to conduct electricity without resistance, within two space rocks.

The discovery implies that small amounts of superconducting materials might be relatively common in meteorites, James Wampler of the University of California, San Diego, said March 6 at a meeting of the American Physical Society. While the superconducting materials found weren’t new to science, additional interplanetary interlopers might harbor new, more technologically appealing varieties of superconductors, the researchers suggest.
Superconductors could potentially beget new, energy-saving technologies, but they have one fatal flaw: They require very cold temperatures to function, making them impractical for most uses. So scientists are on the hunt for new types of superconductors that work at room temperature (SN: 12/26/15, p. 25). If found, such a substance could lead to dramatic improvements in power transmission, computing and high-speed magnetically levitated trains, among other things.

Space rocks are a good avenue to explore in the search for new, exotic materials, says Wampler. “Meteorites are formed under these really unique, really extreme conditions,” such as high temperatures and pressures.

What makes the meteorite superconductors special, the researchers say, is that they occurred naturally, instead of being fabricated in a lab, as most known superconductors are. In fact, says physicist Ivan Schuller, also of University of California, San Diego, these are the highest temperature naturally occurring superconductors known — although they still have to be superchilled to about 5 kelvins (–268.15° C) to work. They are also the first known to have formed extraterrestrially.

“At this point, it’s a novelty,” says chemist Robert Cava of Princeton University. Although Cava is skeptical that scrutinizing meteorites will lead to new, useful superconductors, he says, it’s “kinda cool” that superconductors show up in meteorites.
Wampler, Schuller and colleagues bombarded bits of powdered meteorite with microwaves and looked for changes in how those waves were absorbed as the temperature changed. The sensitive technique can pick out minute traces of superconducting material within a sample.

Analysis of powdered scrapings from more than a dozen meteorites showed that two meteorites contained superconducting material. However, the superconductors found within the meteorites were run-of-the-mill varieties, made from alloys of metals including indium, tin and lead, which are already known to superconduct.

“The idea is, try to look for something that is very unusual,” such as a room temperature superconductor, says Schuller, who led the research. So far, that hope hasn’t been realized — but that hasn’t deterred the search for something more exotic. For a previous study, Wampler, Schuller and colleagues scanned 65 tiny micrometeorites, but found no superconductors at all.

Since parts of space are colder than 5 kelvins, some meteorites may even contain materials that were once superconducting in their chilly natural habitat. That’s an interesting idea, Wampler says, although it’s too early to say whether that possibility might have any astronomical implications for how the objects behave out in space.

4 surprising things we just learned about Jupiter

Bit by bit, Jupiter is revealing its deepest, darkest secrets.

The latest findings are in from the Juno spacecraft. And they unveil the roots of the planet’s storms, what lies beneath the opaque atmosphere and a striking geometric layout of cyclones parked around the gas giant’s north and south poles.

“We’re at the beginning of dissecting Jupiter,” says Juno mission leader Scott Bolton of the Southwest Research Institute in San Antonio. And the picture that’s emerging — still just a sketch — topples many preconceived notions. The results appear in four papers in the March 8 Nature.
Juno has been orbiting Jupiter since July 4, 2016, on a mission to map the planet’s interior (SN: 6/25/16, p. 16). The probe loops around once every 53 days, traveling on an elongated orbit that takes the spacecraft from pole to pole and as close as about 4,000 kilometers above the cloud tops.

As it plows through Jupiter’s gravity field, Juno speeds up and slows down in response to shifting masses inside the planet. By measuring these minute accelerations and decelerations, scientists can calculate subtle variations in Jupiter’s gravity and deduce how its mass is distributed. That lets researchers build up a three-dimensional map of the planet’s internal structure. At the same time, Juno snaps pictures in visible and infrared light. While other probes have extensively photographed much of the planet, Juno is the first to get an intimate look at the north and south poles.

“The whole thing is really intriguing, especially when you compare [Jupiter] to other giant planets,” says Imke de Pater, a planetary scientist at the University of California, Berkeley. “They are all unique, it looks like.”
Check out these four surprising new things we’ve learned that make Jupiter one of a kind:

  1. Rings of cyclones
    Parked at each pole is a cyclone several thousand kilometers wide. That part isn’t surprising. But each of those cyclones is encircled by a polygonal arrangement of similarly sized storms — eight in the north and five in the south. The patterns have persisted throughout Juno’s visit.

“We don’t really understand why that would happen, and why they would collect up there in such a geometric fashion,” Bolton says. “That’s pretty amazing that nature is capable of something like that.”

  1. More than skin deep
    Researchers have long debated whether the photogenic bands of clouds that wrap around Jupiter have deep roots or just skim the top of the atmosphere. Juno’s new look shows that the bands penetrate roughly 3,000 kilometers below the cloud tops. That’s 30 times as thick as the bulk of Earth’s atmosphere. While just a tiny fraction of Jupiter’s diameter, that’s deeper than previously thought, Bolton says.
  2. Weighty weather
    Within those 3,000 kilometers lies what passes for an atmosphere on Jupiter. It’s the stage on which Jupiter’s turbulent weather plays out. The atmosphere alone is about three times as massive as our planet, or 1 percent of Jupiter’s entire mass, researchers estimate.
  3. Stuck together
    Below the atmosphere, Jupiter is fluid. But unlike most fluids, the planet rotates as if it’s a solid mass. Like kids playing crack-the-whip, atoms of hydrogen and helium figuratively link arms and spin around the planet in unison, scientists report. Earlier results from Juno also indicate there’s no solid core lurking beneath this fluid (SN: 6/24/17, p. 14), so anyone dropped into the planet can expect a terribly long fall.

Many of these results are preliminary, and it’s unclear what it all means for how Jupiter operates. But what’s been learned so far, Bolton says, “is quite different than anybody anticipated.”

Some meteorites contain superconducting bits

LOS ANGELES — In the search for new superconductors, scientists are leaving no stone — and no meteorite — unturned. A team of physicists has now found the unusual materials, famous for their ability to conduct electricity without resistance, within two space rocks.

The discovery implies that small amounts of superconducting materials might be relatively common in meteorites, James Wampler of the University of California, San Diego, said March 6 at a meeting of the American Physical Society. While the superconducting materials found weren’t new to science, additional interplanetary interlopers might harbor new, more technologically appealing varieties of superconductors, the researchers suggest.
Superconductors could potentially beget new, energy-saving technologies, but they have one fatal flaw: They require very cold temperatures to function, making them impractical for most uses. So scientists are on the hunt for new types of superconductors that work at room temperature (SN: 12/26/15, p. 25). If found, such a substance could lead to dramatic improvements in power transmission, computing and high-speed magnetically levitated trains, among other things.

Space rocks are a good avenue to explore in the search for new, exotic materials, says Wampler. “Meteorites are formed under these really unique, really extreme conditions,” such as high temperatures and pressures.

What makes the meteorite superconductors special, the researchers say, is that they occurred naturally, instead of being fabricated in a lab, as most known superconductors are. In fact, says physicist Ivan Schuller, also of University of California, San Diego, these are the highest temperature naturally occurring superconductors known — although they still have to be superchilled to about 5 kelvins (–268.15° C) to work. They are also the first known to have formed extraterrestrially.

“At this point, it’s a novelty,” says chemist Robert Cava of Princeton University. Although Cava is skeptical that scrutinizing meteorites will lead to new, useful superconductors, he says, it’s “kinda cool” that superconductors show up in meteorites.
Wampler, Schuller and colleagues bombarded bits of powdered meteorite with microwaves and looked for changes in how those waves were absorbed as the temperature changed. The sensitive technique can pick out minute traces of superconducting material within a sample.

Analysis of powdered scrapings from more than a dozen meteorites showed that two meteorites contained superconducting material. However, the superconductors found within the meteorites were run-of-the-mill varieties, made from alloys of metals including indium, tin and lead, which are already known to superconduct.

“The idea is, try to look for something that is very unusual,” such as a room temperature superconductor, says Schuller, who led the research. So far, that hope hasn’t been realized — but that hasn’t deterred the search for something more exotic. For a previous study, Wampler, Schuller and colleagues scanned 65 tiny micrometeorites, but found no superconductors at all.

Since parts of space are colder than 5 kelvins, some meteorites may even contain materials that were once superconducting in their chilly natural habitat. That’s an interesting idea, Wampler says, although it’s too early to say whether that possibility might have any astronomical implications for how the objects behave out in space.

The debate over how long our brains keep making new nerve cells heats up

Adult mice and other rodents sprout new nerve cells in memory-related parts of their brains. People, not so much. That’s the surprising conclusion of a series of experiments on human brains of various ages first described at a meeting in November (SN: 12/9/17, p. 10). A more complete description of the finding, published online March 7 in Nature, gives heft to the controversial result, as well as ammo to researchers looking for reasons to be skeptical of the findings.

In contrast to earlier prominent studies, Shawn Sorrells of the University of California, San Francisco and his colleagues failed to find newborn nerve cells in the memory-related hippocampi of adult brains. The team looked for these cells in nonliving brain samples in two ways: molecular markers that tag dividing cells and young nerve cells, and telltale shapes of newborn cells. Using these metrics, the researchers saw signs of newborn nerve cells in fetal brains and brains from the first year of life, but they became rarer in older children. And the brains of adults had none.

There is no surefire way to spot new nerve cells, particularly in live brains; each way comes with caveats. “These findings are certain to stir up controversy,” neuroscientist Jason Snyder of the University of British Columbia writes in an accompanying commentary in the same issue of Nature.