Fruit fly’s giant sperm is quite an exaggeration

Forget it, peacocks. Nice try, elk. Sure, sexy feathers and antlers are showy, but the sperm of a fruit fly could be the most over-the-top, exaggerated male ornamentation of all.

In certain fruit fly species, such as Drosophila bifurca, males measuring just a few millimeters produce sperm with a tail as long as 5.8-centimeters, researchers report May 26 in Nature. Adjusted for body size, the disproportionately supersized sperm outdoes such exuberant body parts as pheasant display feathers, deer antlers, scarab beetle horns and the forward-grasping forceps of earwigs.
Fruit flies’ giant sperm have been challenging to explain, says study coauthor Scott Pitnick of Syracuse University in New York.

Now he and his colleagues propose that a complex interplay of male and female benefits has accelerated sperm length in a runaway-train scenario.

Males with longer sperm deliver fewer sperm, bucking a more-is-better trend. Yet, they still manage to transfer a few dozen to a few hundred per mating. And as newly arrived sperm compete to displace those already waiting in a female’s storage organ, longer is better. Fewer sperm per mating means females tend to mate more often, intensifying the sperm-vs.-sperm competition. Females that have the longest storage organs, which favor the longest sperm, benefit too: Males producing greater numbers of megasperm, the researchers found, tend to be the ones with good genes likely to produce robust offspring. “Sex,” says Pitnick, “is a powerful force.”
Among courtship-oriented body ornaments and weapons (red), the giant sperm of fruit flies (Drosophila) are the most disproportionately exaggerated, according to an index adjusted for body size. Higher numbers (bottom axis) indicate greater exaggeration.

Francis Crick’s good luck revolutionized biology

When Francis Crick was 31, he decided he needed to change his luck. As a graduate student in physics during World War II, his research hadn’t gone so well; his experiment was demolished by a bomb. To beat the war, he joined it, working on naval warfare mines for the British Admiralty.

After the war, he sought a new direction.

“There are lots of ways of being unlucky,” Crick told me in an interview in 1998. “One is sticking to things too long. Another is not adventuring at all.”

He decided to adventure.

Molecular biologists everywhere will celebrate that decision on June 8, the centennial of Crick’s birth, in Weston Favell, Northampton, England, in 1916.

“Crick was one of the central figures, one might say the central figure, in the molecular revolution that swept through biology in the latter half of the 20th century,” science historian Robert Olby wrote in a biographical sketch.

In 1953, at the University of Cambridge, Crick and his collaborator James Watson figured out how life’s most important molecule, deoxyribonucleic acid, was put together. DNA, the stuff that genes are made of, became the most famous of biological molecules. Today the image of its double helix structure symbolizes biology itself. It would be easy to make the case that discovering DNA’s structure was the single greatest event in the history of biology — and always will be. In 1962, Watson and Crick won the Nobel Prize for their work (which was, of course, greatly aided by X-ray diffraction imagery from Rosalind Franklin, who unfortunately died before the Nobel was awarded).

Crick’s DNA adventure began at a time when molecular biology was ripe for revolution. But Crick didn’t know that. His choice was lucky.
“I had no idea when I started that molecular biology would advance so fast,” he said. “No idea at all.”

In fact, Crick very nearly chose a different path. His interest in genes was equaled by his curiosity about the brain. Both were topics that he liked to gossip about.

“But I didn’t know enough about either subject,” he said. He just knew a little bit more about biochemistry.

“I thought ‘Well look, I have a training in physics and I know a bit of chemistry, I don’t know anything about the brain.’” So he decided it would be more sensible to start with genes.

“I thought that problem of what genes were and how they replicate and what they did would last me the rest of my life,” he said.

As it happened, genes did occupy him for a couple of decades. Crick made major contributions to elucidating the genetic code during that time. But he never forgot his interest in the brain, and more specifically, consciousness. In the 1970s, he moved from England to California, where he began consciousness research in San Diego at the Salk Institute for Biological Studies.

Consciousness turned out to be a much tougher problem than understanding genes. In retrospect, Crick could see why.

With genetics, “what really made the thing was the simplicity of the double helix. It wrote the whole research program,” he said. “It probably goes back to near the origin of life, when things had to be simple.” Consciousness appeared on the scene only much later, after the evolution of the brain’s vast complexity.

Nevertheless, Crick perceived parallels between genetics and consciousness as subjects for scientific inquiry. As the 20th century came to an end, he mused that consciousness as a concept remained vague — researchers did not all agree about what the word meant. The situation with genes had at one time been similar.

“In a sense people were just as vague about what genes were in the 1920s as they are now about consciousness,” Crick said. “It was exactly the same. The more professional people in the field, which was biochemistry at that time, thought that it was a problem that was too early to tackle. And I think they were right in the ’20s.”

At the end of the 20th century, research on consciousness found itself in much the same state.

“Everybody agrees that it’s an interesting question,” Crick said, “but there are two points of view among scientists: One is that it isn’t a scientific question and is best left to philosophers. And the other one is that, even if it’s a scientific question, it’s too early to tackle it now.”

Crick tackled it anyway. Until his death in 2004, he worked vigorously on the subject with his collaborator Christof Koch, making substantial inroads into identifying the brain activity associated with conscious awareness. Crick was not lucky enough to solve the problem of consciousness, but he perhaps brought the arrival of that solution a little closer.

Ocean plankton held hostage by pirate viruses

When plankton on the high seas catch a cold, the whole ocean may sneeze. Viruses hijacking these microbes could be an important overlooked factor in tracing how living things trap — or in this case, fail to trap — the climate-warming gas carbon dioxide.

Plants and other organisms that photosynthesize use energy from the sun to capture CO2 for food. The most abundant of these photosynthesizers on the planet are marine cyanobacteria with hardly any name recognition: Synechococcus and Prochlorococcus.
Now, for the first time, a study looks in detail at what happens when some of the abundant viruses found in the sea infect these microbes. Two viruses tested in the lab hijacked cell metabolism, allowing photosynthesis to continue but shunting the captured energy to virus reproduction. The normal use of that energy, capturing CO2, largely shuts down, David Scanlan of the University of Warwick in England and colleagues report online June 9 in Current Biology. As a result, people could be overestimating by 10 percent the amount of CO2 that photosynthesis in the oceans captures.

On any given day, 1 to 60 percent of these plankton may have picked up a viral infection, researchers have estimated. That means that between 0.02 and 5.39 petagrams of carbon — up to 5.39 billion metric tons — may not be captured by marine organisms a year. The high end of that scenario is equivalent to 2.8 times the CO2 routinely captured annually by all the planet’s salt marshes, coral reefs, estuaries, sea grass meadows and seaweeds put together.

Synechococcus and Prochlorococcus plankton “are organisms that you’ve never heard of but you really should have,” says Adam Martiny of the University of California, Irvine. He studies the same kinds of plankton but wasn’t involved in the new virus research, and what he appreciates about it is the intriguing biology of viral manipulation the new work has uncovered.

Until now, Scanlan says, the prevailing view was that while infected plankton were still alive, they were probably carrying on normal photosynthesis. As early as 2003, researchers had clues that the viruses attacking these tiny marine organisms might manipulate photosynthesis in some way, perhaps keeping the process running in an infected cell. These viruses have genes for proteins used in photosynthesis, even though a virus doesn’t even have its own cell much less a way to photosynthesize.

What the viruses are doing, Scanlan and his colleagues have now shown, is subverting their victim’s photosynthesis. Energy capture, the part of photosynthesis directly involved with light, goes on as usual; the cells carry out the routine electron transport for catching energy. But instead of using those sizzling electrons to capture CO2 and turn it into carbohydrates for basic cell metabolism, the viruses shut down this process (called carbon fixation). The light reactions are the ones that researchers normally measure to estimate how much carbon photosynthesis captures in the oceans, but the covert viral shunting means that estimate could be too high.

Scanlan cautions that this is just the beginning of working out the numbers and possible climate effects of virus diseases for these organisms. Whatever the current effects of this takeover turn out to be outside the lab, they may intensify as the climate changes. Synechococcus and Prochlorococcus are “projected to be winners in the new, warmer oceans” and may become even more numerous, Martiny says. And what’s good for them may also increase the abundance of the viral pirates that hijack them.

The 43-year history of journeys to Jupiter, in one graph

Since 1973, eight spacecraft have flown past or orbited Jupiter. On July 4, NASA’s Juno probe will become the planet’s ninth visitor.

Juno’s trajectory is different than all others, as seen in the plot above and in the video. For 20 months, Juno will repeatedly skim the cloud tops, looping over the poles on orbits that are almost perpendicular to Jupiter’s equator.

Most other spacecraft zipped by, using the planet’s gravity to speed them along to other destinations. Only Galileo, which arrived in 1995, stuck around; it spent nearly eight years circling Jupiter’s equator, repeatedly buzzing the four largest moons.

Baby birds’ brains selectively respond to dads’ songs

Young zebra finches (Taeniopygia guttata) learn to sing from a teacher, usually dad. Remembering dad’s tunes may even be hardwired into the birds’ brains.

Researchers at the Okinawa Institute of Science and Technology in Japan measured activity in the brains of male juvenile birds listening to recordings of singing adult males, including their fathers. The team focused its efforts on neurons in a part of the brain called the caudomedial nidopallium that’s thought to influence song learning and memory.

A subset of neurons in the caudomedial nidopallium lit up in response to songs performed by dad but not those of strangers, the team reports June 21 in Nature Communications. The more baby birds heard songs, the more their neurons responded and the clearer their own songs became. Sleep and a neurotransmitter called GABA influenced this selectivity.

The researchers suggest that this particular region of the brain stores song memories as finches learn to sing, and GABA may drive the storage of dad’s songs over others.
Researchers played a variety of sounds for young zebra finches: their own song, dad’s song and songs and calls from other adult finches. Over time, their songs became more and more similar to that of their father.

Making a mistake can put your brain on ‘pause’

Mistakes can be learning opportunities, but the brain needs time for lessons to sink in.

When facing a fast and furious stream of decisions, even the momentary distraction of noting an error can decrease accuracy on the next choice, researchers report in the March 15 Journal of Neuroscience.

“We have a brain region that monitors and says ‘you messed up’ so that we can correct our behavior,” says psychologist George Buzzell, now at the University of Maryland in College Park. But sometimes, that monitoring system can backfire, distracting us from the task at hand and causing us to make another error.
“There does seem to be a little bit of time for people, after mistakes, where you’re sort of offline,” says Jason Moser, a psychologist at Michigan State University in East Lansing, who wasn’t part of the study.

To test people’s response to making mistakes, Buzzell and colleagues at George Mason University in Fairfax, Va., monitored 23 participants’ brain activity while they worked through a challenging task. Concentric circles flashed briefly on a screen, and participants had to respond with one hand if the two circles were the same color and the other hand if the circles were subtly different shades.

After making a mistake, participants generally answered the next question correctly if they had a second or so to recover. But when the next challenge came very quickly after an error, as little as 0.2 seconds, accuracy dropped by about 10 percent. Electrical activity recorded from the visual cortex showed that participants paid less attention to the next trial if they had just made a mistake than if they had responded correctly.

The cognitive demand of noting and processing the error seems to divert attention that would otherwise be devoted to the task, Buzzell says.

In real life, people usually have time — even if just a few seconds — to reflect on a mistake before having to make another decision, says Jan Wessel, a psychologist at the University of Iowa in Iowa City. But in some activities such as driving a car or playing a musical instrument, people must rebound from errors quickly while continuing to correctly carry out the rest of the task, he says. Those actions might push the limits of error processing.

Tool use in sea otters doesn’t run in the family

Aside from being adorable, sea otters and Indo-Pacific bottlenose dolphins share an ecological feat: Both species use tools. Otters crack open snails with rocks, and dolphins carry cone-shaped sponges to protect their snouts while scavenging for rock dwelling fish.

Researchers have linked tool use in dolphins to a set of differences in mitochondrial DNA — which passes from mother to offspring — suggesting that tool-use behavior may be inherited. Biologist Katherine Ralls of the Smithsonian Institution in Washington, D.C., and her colleagues looked for a similar pattern in otters off the California coast. The team tracked diet (primarily abalone, crab, mussels, clams, urchins or snails) and tool use in the wild and analyzed DNA from 197 individual otters.

Otters that ate lots of hard-shelled snails — and used tools most frequently — rarely shared a common pattern in mitochondrial DNA, nor were they more closely related to other tool-users than any other otter in the population.

Unlike dolphins, sea otters may all be predisposed to using tools because their ancestors probably lived off mollusks, which required cracking open. However, modern otters only take up tools when their diet requires them, the researchers report March 21 in Biology Letters.

First fluorescent frogs might see each others’ glow

Could fluorescence matter to a frog? Carlos Taboada wondered. They don’t have bedroom black lights, but their glow may still be about the night moves.

Taboada’s question is new to herpetology. No one had shown fluorescence in amphibians, or in any land vertebrate except parrots, until he and colleagues recently tested South American polka dot tree frogs. Under white light, male and female Hypsiboas punctatus frogs have translucent skin speckled with dark dots. But when the researchers spotlighted the frogs with an ultraviolet flashlight, the animals glowed blue-green. The intensity of the glow was “shocking,” says Taboada of the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” in Buenos Aires.
And it is true fluorescence. Compounds in the frogs’ skin and lymph absorb the energy of shorter UV wavelengths and release it in longer wavelengths, the researchers report online March 13 in Proceedings of the National Academy of Sciences. But why bother, without a black bulb? Based on what he knows about a related tree frog’s vision, Taboada suggests that faint nocturnal light is enough to make the frogs more visible to their own kind. When twilight or moonlight reflects from their skin, the fluorescence accounts for 18 to 30 percent of light emanating from the frog, the researchers calculate.
Polka dot frogs, common in the Amazon Basin, have plenty to see in the tangled greenery where they breed. Males stake out multilevel territories in vast floating tangles of water hyacinths and other aquatic plants. When a territory holder spots a poaching male, frog grappling and wrestling ensues. Taboada can identify a distinctive short treble bleat “like the cry of a baby,” he says, indicating a frog fight.
Males discovering a female give a different call, which Taboada could not be coaxed to imitate over Skype. The polka dot frogs’ courtship is “complex and beautiful,” he says. For instance, a male has two kinds of secretion glands on the head and throat. During an embrace, he nudges and presses his alluring throat close to a female’s nose. If she breaks off the encounter, he goes back to clambering in rough figure eights among his hyacinths, patrolling for perhaps the blue-green ghost of another chance.

The most distant quasar ever spotted hails from the universe’s infancy

The most distant quasar yet spotted sends its light from the universe’s toddler years. The quasar, called J1342+0928, existed when the universe was only 690 million years old, right when the first stars and galaxies were forming.

Quasars are bright disks of gas and dust swirling around supermassive black holes. The black hole that powers J1342+0928 has a mass equivalent to 800 million suns, and it’s gobbling gas and dust so fast that its disk glows as bright as 40 trillion suns, Eduardo Bañados of the Carnegie Institution for Science in Pasadena, Calif., and his colleagues report December 6 in Nature.
“The newly discovered quasar gives us a unique photo of the universe when it was 5 percent [of] its present age,” Bañados says. “If the universe was a 50-year-old person, we would be seeing a photo of that person when she/he was 2 1/2 years old.”

This quasar is only slightly smaller than the previous distance record-holder, which weighs as much as 2 billion suns and whose light is 12.9 billion years old, emitted when the universe was just 770 million years old (SN: 7/30/11, p. 12). Scientists still aren’t sure how supermassive black holes like these grew so big so early.

“They either have to grow faster than we thought, or they started as a bigger baby,” says study coauthor Xiaohui Fan of the Steward Observatory in Tucson.

The temperature of the gas surrounding the newfound quasar places it squarely in the epoch of reionization (SN: 4/1/17, p. 13), when the first stars stripped electrons from atoms of gas that filled interstellar space. That switched the universe’s gas from mostly cold and neutral to hot and ionized. When this particular black hole formed, the universe was about half hot and half cold, Fan says.
“We’re very close to the epoch when the first-generation galaxies are appearing,” Fan says.

New Horizons’ next target might have a moon

NEW ORLEANS — The New Horizons team may get more than it bargained for with its next target. Currently known as 2014 MU69, the object might, in fact, be two rocks orbiting each other — and those rocks may themselves host a small moon.

MU69 orbits the sun in the Kuiper Belt, a region more than 6.5 billion kilometers from Earth. That distance makes it difficult to get pictures of the object directly. But last summer, scientists positioned telescopes around the globe to catch sight of MU69’s shadow as it passed in front of a distant background star (SN Online: 7/20/17), a cosmic coincidence known as an occultation.
Analyzing that flickering starlight raised the idea that MU69 might have two lobes, like a peanut, or might even be a pair of distinct objects. Whatever its shape, MU69 is not spherical and may not be alone, team members reported in a news conference on December 12 at the fall meeting of the American Geophysical Union.

Another stellar flicker sighting raised the prospect of a moon. On July 10, NASA’s airborne Stratospheric Observatory for Infrared Astronomy observed MU69 pass in front of a different star (SN: 3/19/16, p. 4). SOFIA saw what looked like a new, shorter dip in the star’s light. Comparing that data with orbit calculations from the European Space Agency’s Gaia spacecraft suggested that the blip could be another object around MU69.

A double object with a smaller moon could explain why MU69 sometimes shifts its position from where scientists expect it to be during occultations, said New Horizons team member Marc Buie of the Southwest Research Institute in Boulder, Colo.

The true shape will soon be revealed. The New Horizons spacecraft set its sights on the small space rock after flying past Pluto in 2015, and will fly past MU69 on January 1, 2019.