40 years ago, Viking 1 pioneered U.S. exploration on Mars

Happy 40th anniversary, Viking 1! Four decades ago — July 20, 1976 — the robotic probe became the first U.S. mission to land on Mars. Its sister spacecraft, Viking 2, touched down 45 days later.

Launched August 20, 1975, Viking 1 spent over 6 years snapping pictures and studying the soil at its landing site, an ancient crater named Chryse Planitia. An experiment to look for Martian microbes turned up nothing definitive, though some researchers continue to argue otherwise.

Viking 1 wasn’t the first to successfully touch down on the Red Planet. That honor goes to the Soviet probe Mars 3, whichgently landed on Mars in 1971, though its only transmission — a partial, garbled image — lasted just 20 seconds.

Today, seven probes actively call Mars home. A European-led orbiter and lander, ExoMars, is on its way, and NASA has two missions lined up: the Insight lander, whose launch was recently delayed to 2018, and the Mars 2020 rover, which will pick up where the Vikings left off and search for Martian life.

Evolution of gut bacteria tracks splits in primate species

Microbes may have played a role in making us, us. A new study shows similar patterns in the evolution of gut bacteria and the primates they live in, suggesting that germs and apes could have helped shaped one another.

For at least 10 million years, bacteria have been handed down from the common ancestor of humans and African apes. As apes split into separate species, so did the microbes inside them, researchers report July 22 in Science. Now, relationships between gut bacterial species mirror the family tree of gorillas, humans, bonobos and chimpanzees.
Germs are a piece of our history, says evolutionary biologist Andrew Moeller who led the study while at both the University of Texas at Austin and the University of California, Berkeley. “Just like genes we’ve inherited from our ancestors,” he says, “we’ve inherited some of our bacteria from our ancestors as well.”

It’s well known that bacteria are key to human health (SN: 04/02/16, p. 23). They play major roles in the immune system and development. But very few researchers have turned to the past, Moeller says, to ask how humans got those handy bacteria in the first place. His team studied three families of bacteria living in the feces of people from Connecticut, as well as in that of wild chimps, bonobos and gorillas. The scientists used DNA evidence to build relationship trees for each bacterial family, then compared each tree with known relationships between humans and close primate relatives.

Two of three bacterial trees matched primate relationships. For those families, closely related bacteria live in closely related primates. For humans, “the closest relatives of our gut bacteria live in chimpanzees,” Moeller says, “just like our closest relatives are chimps.”

Scientists would expect that pattern to match only if apes and bacteria split into new species in unison. The fact that apes and bacteria split at roughly the same time, while bacteria were living inside of ape species, implies that they were influencing each other, and therefore that the evolution of one group could shape the evolution of the other.

Changing bacteria may have “allowed us to evolve,” says microbial geneticist Julia Segre of the National Human Genome Research Institute in Bethesda, Md., who was not involved in the new work. She and conservationist Nick Salafsky of the nonprofit Foundations of Success, also in Bethesda, wrote a perspective on it in the same issue of Science.

A “very intimate relationship with bacteria,” she says, “is part of who we are.” While the researchers agree that humans and bacteria probably shaped each other’s evolution, they caution that it’s too soon to tell if (and how) ancient apes and microbes changed each other.

Those ancient relationships may get harder to study over time. Industrialization and antibiotics have reduced the diversity of bacteria living in and on humans, Moeller says. And while the microbes in this study have stuck around, other groups may have disappeared or changed dramatically.

One caveat, Segre says, is that humans have been exposed to antibiotics and modern life. Wild African apes might still have their ancient gut flora, but people in Connecticut might not (SN: 12/13/14, p. 10). It’s especially important to do studies like this now, she says, “because it’s not going to get better.”

In the future, Moeller says, researchers should look deeper into the past to see if the gut bacteria living in all mammals share one common ancestor. Scientists could also go the other way, he says, to see if more recently divided human populations also have characteristic gut bacteria.

Study ranks Greenland shark as longest-lived vertebrate

The latest in birthday science proposes that the vertebrate with the longest life span yet measured is the mysterious Greenland shark.

Dating based on forms of carbon found in sharks’ eye lenses suggests that a large female Somniosus microcephalus was about 392 years old (give or take 120 years) when she died, says marine biologist Julius Nielsen of University of Copenhagen. Even with that uncertainty, the shark outdoes what Nielsen considers the previous record holder: a bowhead whale estimated to have lived 211 years.
The dating comes from the first use of eye-lens dating for a fish, Nielsen says. An analysis that produced the date, involving 27 other Greenland shark specimens, suggests that females don’t reach sexual maturity until they’re about 156 years old, Nielsen and his colleagues report August 12 in Science. Remarkably little basic biology is known for the Greenland shark, though.

And figuring out the age of these sharks has “stymied all solution attempts,” says Steven Campana of the University of Iceland in Reykjavik. ”Given that the Greenland shark is one of the largest carnivores in the world and the king of the food chain [in northern waters], it is almost unbelievable that we don’t know if this shark lives to 20 years or to 1,000,” says Campana, who has long studied shark aging but was not part of this research. Both extremes have been suggested.

Unlike familiar bony fish, such as salmon and cod, sharks don’t have ear bones that build up calcified rings that reveal age. Some sharks, such as the great whites, have some calcified vertebrae that serve, but the Greenland species is “a soft shark,” Nielsen says. And it’s an odd-looking one. He finds that some people are disappointed with their first sight of the big, dark, ponderous beasts because they’re a long way from the stereotype of the great white sharks’ streamlined killer look. “Definitely plump,” Nielsen says.

Working with 28 Greenland sharks of different sizes that were accidentally caught during fisheries surveys, Nielsen and his colleagues examined eye lenses. The highly specialized clear proteins in lenses start with a nugget formed in utero, and studies in mammals have scrutinized that small bit for clues to a creature’s birth date.

Nielsen’s team looked for anomalies in carbon created by the pulse of radioactivity from the 1950s bomb testing in the Pacific Ocean. Radiocarbons worked their way into, and lingered in, all the food webs on the planet. The pulse first reached the sharks’ realms in the North Atlantic in the 1960s, the scientific literature indicates. Nielsen was startled to discover that only three specimens in his collection had the carbon anomalies — and they were the smaller sharks.
He and colleagues used the size of a shark that appeared to have been born just as the bomb pulse was arriving in the ocean food system as a kind of calibration marker. Then, in an elaborate statistical analysis, they used size and growth rates to work out ages for the rest.

Campana is skeptical that Greenland sharks can live nearly 400 years. Other sharks typically live for 10 to 80 years, he says. “I certainly accept that it grows for more than a century.” But to crown the Greenland shark a record holder, he is waiting for future research.

Extreme life spans evolve just like polar bear white fur or long giraffe necks to fit into the sum of ways an organism feeds, dodges its predators and reproduces in its environment. Says James R. Carey of the University of California, Davis, who studies demography across the tree of life, “the really deeper question is once you identify a species that’s long-lived — why?”

Americas’ hookup not so ancient after all

A debate over when the gap between North and South America closed has opened a rift in the scientific community.

Analyzing existing data from ancient rocks, fossils and genetic studies, a group of researchers has assembled a defense of the conventional view that the Isthmus of Panama formed around 3 million years ago. That work rebuts papers published last year that concluded that the continental connection started millions of years earlier (SN: 5/2/15, p. 10). The authors of the new paper, published August 17 in Science Advances, caution against the “uncritical acceptance” of the older formation date.
“Those of us who are advocating the traditional view are in danger of being seen as old fuddy-duddy conservatives,” says study coauthor Harilaos Lessios, a molecular evolutionist at the Smithsonian Tropical Research Institute in Panama City. “But sometimes the traditional view is the correct one.”
The American continents drifted apart following the breakup of the Pangaea supercontinent around 200 million years ago. Eventually, the landmasses slid back together. As they reconnected, a volcanic mound on the Caribbean tectonic plate collided with South America and rose above the ocean. This new land closed a seaway between the Pacific and Atlantic oceans, rerouted ocean currents and sparked animal migrations, leaving clues that scientists on both sides of the debate are using to determine the age of the Isthmus of Panama.

Aaron O’Dea, a paleontologist at the Smithsonian Tropical Research Institute, Lessios and colleagues revisited several of those lines of evidence to date the seaway closure. For instance, fossil records reveal that land animals began migrating more frequently between the Americas around 2.7 million years ago, possible evidence of a newly available land route, O’Dea’s team concludes. Critics, though, counter that those migrations were instead driven by climate and ecosystem changes that allowed animals to migrate.
In the oceans, the closed seaway divided populations of marine organisms such as sand dollars. Over time, these populations’ genetic makeups diverged. Based on the degree of genetic change between the groups as well as fossil evidence, O’Dea’s team estimates that the seaway closed roughly 3 million years ago.

Christine Bacon, an evolutionary biologist at the University of Gothenburg in Sweden, and colleagues analyzed similar evidence last year but came to a different conclusion. The seaway closed between 23 million and 7 million years ago, Bacon and colleagues estimated in the Proceedings of the National Academy of Sciences. That study assumed a different rate of genetic divergence and looked at more species than the work by O’Dea and colleagues, Bacon says.

Rocks also trace the isthmus’s rise from the sea. Chemical traces from ancient ocean sediments record when seawater stopped mixing between the Atlantic and Pacific. Analyzing those traces, O’Dea and colleagues estimate that the seaway became relatively shallow around 12 million to 9.2 million years ago and completely shut around 2.7 million years ago.

Other rocky evidence tells a different story, proponents of the older age claim. Volcanically-forged crystals, known as zircons, found in South America date back to around 13 million to 15 million years ago. The only possible source of those crystals was in Panama, suggesting that a river washed the crystals down a land connection between Panama and South Americaaround that time, geologist Camilo Montes of the Universidad de los Andes in Bogotá, Colombia, and colleagues concluded last year in Science.
Those South American crystals may have formed closer to home, O’Dea and colleagues argue in the new paper. Similar crystals have been found elsewhere in South America, so the crystals reported by Montes and colleagues may have originated from a source in South America, not Panama, O’Dea says.

Some of the disagreement between the two sides stems from the fact that the seaway closure wasn’t a single event, says Carlos Jaramillo, a paleontologist at the Smithsonian Tropical Research Institute who coauthored the studies by Montes and Bacon. The seaway would have closed in stages, with various segments shortened and closed off over millions of years, Jaramillo says. “You can’t just use one date for everything, it depends on what you’re looking at,”he says.

Bacon is holding her ground. “They basically rehashed a mishmash of old papers,” she says of the new work. “We need to gather new data and collaborate rather than hold on to old ideas bitterly.”

Mosquito moms can pass Zika to offspring

Female mosquitoes carrying the Zika virus can pass the infection to the next generation, lab tests show.

Among Aedes aegypti mosquitoes, thought to be the main species spreading Zika in the Americas, at least one out of every 290 lab offspring catches the virus from its mother, Texas researchers say August 29 in the Journal of Tropical Medicine and Hygiene. Infected eggs, which can survive for months on dry surfaces, could keep the virus circulating even after dry or cold spells, when adult mosquitoes die off, warns Robert Tesh of University of Texas Medical Branch in Galveston.

Earlier research had already shown that youngsters of this species can inherit related viruses, such as those causing dengue, West Nile and yellow fever. Mom-to-egg transmission though is not a given: The same research project also reported no evidence so far of this vertical transmission in 803 offspring of another possible Zika spreader, Ae. albopictus.

It’s not known how likely mosquito moms are to infect their young outside of the lab. Doing a reliable test with wild mosquitoes outdoors is a much more difficult project, the researchers say.

Dwarf lemurs don’t agree on sleep

Contrary to many adorable children’s stories, hibernation is so not sleeping. And most animals can’t do both at the same time.

So what’s with Madagascar’s dwarf lemurs? The fat-tailed dwarf lemur slows its metabolism into true hibernation, and stays there even when brain monitoring shows it’s also sleeping. But two lemur cousins, scientists have just learned, don’t multitask. Like other animals, they have to rev their metabolisms out of hibernation if they want a nap.
Hibernating animals, in the strictest sense, stop regulating body temperature, says Peter Klopfer, cofounder of the Duke Lemur Center in Durham, N.C. “They become totally cold-blooded, like snakes.” By this definition, bears don’t hibernate; they downregulate, dropping their body temperatures only modestly, even when winter den temperatures sink lower. And real hibernation lasts months, disqualifying short-termers such as subtropical hummingbirds. The darting fliers cease temperature regulation and go truly torpid at night. “You can pick them out of the trees,” Klopfer says.

The fat-tailed dwarf lemur, Cheirogaleus medius, was the first primate hibernator discovered, snuggling deep into the softly rotting wood of dead trees. “You’d think they’d suffocate,” he says. But their oxygen demands plunge to somewhere around 1 percent of usual. As trees warm during the day and cool at night, so do these lemurs. When both a tree and its inner lemur heat up, the lemur’s brain activity reflects mammalian REM sleep.

Klopfer expected much the same from two other dwarf lemurs from an upland forest with cold, wet winters. There, C. crossleyi and C. sibreei spend three to seven months curled up underground, below a thick cushion of fallen leaves. “If you didn’t know better, you might think they were dead because they’re cold to the touch,” Klopfer says.

Unlike the tree-hibernators, the upland lemurs take periodic breaks from hibernating to sleep, Klopfer, the Lemur Center’s Marina Blanco and colleagues report in the August Royal Society Open Science. The lemurs generated some body heat of their own about once a week, which is when their brains showed signs of sleep (REM-like and slow-wave). “My suspicion is that sleep during torpor is only possible at relatively high temperatures, above 20º Celsius,” Klopfer says. Sleep may be important enough for cold-winter lemurs to come out of the storybook “long winter’s nap.”

Shayan Oveis Gharan finds the shortest route to success

It’s a problem that sounds simple, but the best minds in mathematics have puzzled over it for generations: A salesman wants to hawk his wares in several cities and return home when he’s done. If he’s only visiting a handful of places, it’s easy for him to schedule his visits to create the shortest round-trip route. But the task rapidly becomes unwieldy as the number of destinations increases, ballooning the number of possible routes.

Theoretical computer scientist Shayan Oveis Gharan, an assistant professor at the University of Washington in Seattle, has made record-breaking advances on this puzzle, known as the traveling salesman problem. The problem is famous in mathematical circles for being deceptively easy to describe but difficult to solve. But Oveis Gharan has persisted. “He is relentless,” says Amin Saberi of Stanford University, Oveis Gharan’s former Ph.D. adviser. “He just doesn’t give up.”
Oveis Gharan’s unwavering focus has enabled him to identify connections between seemingly unrelated areas of mathematics and computer science. He scrutinizes the work of the fields’ most brilliant minds and adapts those techniques to fit his purposes. This strategy — bringing new tools to old problems — is the basis for leaps he has made on two varieties of the traveling salesman problem.

“If you want to build a house, you need to have a sledgehammer and a level, a wrench, tape measure,” he says. “You need to have a lot of tools and use them one after another.” Oveis Gharan, age 30, stocks his toolkit with the latest advances in fields with obscure-sounding names, including spectral graph theory, polyhedral theory and geometry of polynomials. And in a twist that only Oveis Gharan saw coming, a recent solution to a long-standing problem originating in quantum mechanics turned out to be the missing piece to one aspect of the salesman’s puzzle.
For a salesman’s tour of five cities, there are just 12 possible routes; it’s easy enough to pick the one that will save the most gas. But for 20 cities, there are 60 quadrillion possibilities, and for 80 cities, there are more routes than the number of atoms in the observable universe. Relying on brute force — calculating the distances of all the possible routes — is intractable for all but the easiest cases. Yet no one has found a simple method that can quickly find the shortest path for any number and arrangement of cities. The quandary has real-world importance: Companies like Amazon and Uber, for example, want to ferry goods and people to many destinations in the most efficient way possible.

Growing up in his home country of Iran, Oveis Gharan discovered a natural appreciation for challenging puzzles. In middle school, he acquired a book of problems from mathematics Olympiad competitions in the Soviet Union. As a student, “I tend to be one of the slower ones,” Oveis Gharan says, noting that he was usually not the first to grasp a new theorem. But within a few years, he had doggedly plowed through the 200-page book.

The effort also provided Oveis Gharan with his first taste of tool collecting, through collaboration with classmates who joined him in working through the math problems. Oveis Gharan found that solutions come easier when many minds contribute. “Each person thinks and solves problems differently,” he says. “Once someone is exposed to many different ideas and ways of thinking on a problem, that will help a lot to increase the breadth of problem-attacking directions.”

Oveis Gharan attended Sharif University of Technology in Tehran before making his first breakthroughs on the traveling salesman problem as a graduate student at Stanford University. He spent over a year cracking just one thorny facet, before moving on to a postdoctoral fellowship at the University of California, Berkeley.
Rather than attacking the problem head-on, Oveis Gharan works on approximate solutions — routes that are slightly longer than the optimal path but can be calculated in a reasonable amount of time. Since the 1970s, computer scientists have known of a strategy for quickly finding a route that is at most 50 percent longer than the shortest possible path. That record held for decades, until Oveis Gharan tackled it along with Saberi and Mohit Singh, then of McGill University in Montreal.

In a paper published in 2011, the team made what might sound like an infinitesimal improvement, shrinking the 50-percent figure by four hundredths of a trillionth of a trillionth of a trillionth of a trillionth of a percentage point. “People make fun of our paper because of that small improvement,” says Oveis Gharan, “but the thing is that in our area, the actual number is not the major question.”
Instead, the goal is to develop new ideas that can begin to crack the problem open, says Luca Trevisan, a computer scientist at Berkeley. “What’s so important is not the specific algorithm that he has devised, but that there is a whole new set of techniques that can potentially be applied to other problems.” Following the advance, other scientists revisited the traveling salesman problem, and decreased the number significantly; the selected route is now at most 40 percent longer than optimal.

To make his breakthroughs, Oveis Gharan keeps tabs on the scientific literature across a variety of mathematical fields. “Every time new papers or new techniques come out, he’s one of the first people who will pick up the paper and read it,” says Saberi. To discover tools outside his areas of expertise, Oveis Gharan poses pieces of the problem to researchers in other fields.

In 2015, Oveis Gharan and computer scientist Nima Anari, then at Berkeley, made further progress on an approximate solution for a more general, and more challenging, version of the traveling salesman problem. In this version, the distance to go from point A to point B might not be the same as going the opposite direction — a plausible situation in cities with many one-way streets. Researchers had a way to estimate the optimum tour length, but they didn’t understand how good the estimate was. Oveis Gharan and Anari showed it was exponentially better than known previously.

To make this advance, Oveis Gharan teased out connections to a seemingly unrelated problem in mathematics and quantum mechanics, known as the Kadison-Singer problem. “That was really surprising,” says computer scientist Daniel Spielman of Yale University, part of a team that solved the Kadison-Singer problem in 2013. “There was no obvious connection,” he says. “Shayan is incredibly brilliant and incredibly creative.”

Oveis Gharan is now focused on a furtherconquest of this version of the traveling salesman problem. Though his new advance helps approximate the optimal tour length, it can’t identify the corresponding route. Next, Oveis Gharan would like to produce an algorithm that can navigate the correct course.

You can bet he’ll continue to add to his tool collection by sampling from related mathematical and computational fields. “The grand plan is: Try to better understand how these different areas are connected to one another,” Oveis Gharan says. “There are many big open problems lying in this intersection.”

Methane didn’t warm ancient Earth, new simulations suggest

Methane wasn’t the cozy blanket that kept Earth warm hundreds of millions of years ago when the sun was dim, new research suggests.

By simulating the ancient environment, researchers found that abundant sulfate and scant oxygen created conditions that kept down levels of methane — a potent greenhouse gas — around 1.8 billion to 800 million years ago (SN: 11/14/15, p. 18). So something other than methane kept Earth from becoming a snowball during this dim phase in the sun’s life. Researchers report on this new wrinkle in the so-called faint young sun paradox (SN: 5/4/13, p. 30) the week of September 26 in the Proceedings of the National Academy of Sciences.

Limited oxygen increases the production of microbe-made methane in the oceans. With low oxygen early in Earth’s history, many scientists suspected that methane was abundant enough to keep temperatures toasty. Oxygen may have been too sparse, though. Recent work suggests that oxygen concentrations at the time were as low as a thousandth their present-day levels (SN: 11/28/14, p. 14).

Stephanie Olson of the University of California, Riverside and colleagues propose that such low oxygen concentrations thinned the ozone layer that blocks methane-destroying ultraviolet rays. They also estimate that high concentrations of sulfate in seawater at the time helped sustain methane-eating microbes. Together, these processes severely limited methane to levels similar to those seen today — far too low to keep Earth defrosted.

New book tells strange tales of evolution

The Wasp That Brainwashed the Caterpillar Matt Simon Penguin Books, $20
Writer Matt Simon begins his new book with a bleak outlook on life: “In the animal kingdom, life sucks and then you die.” But thanks to evolution — which Simon calls “the most majestic problem-solving force on planet Earth” — some critters have peculiar adaptations that make life suck a little less (though sometimes at the expense of other species).

From mustachioed toads to pink fairy armadillos, Simon’s debut book, The Wasp That Brainwashed the Caterpillar, recounts an eclectic cadre of animals that use creative and often bizarre solutions to find love, a babysitter, a meal or a place to crash.
Take, for instance, the book’s title characters. Technically, it’s the wasp larvae that brainwash the caterpillar. Once a female Glyptapanteles wasp deposits eggs into a living caterpillar, she takes off, leaving the oblivious host to babysit her young. After hatching, some larvae stay behind to release chemicals that manipulate the caterpillar’s brain. Once their siblings erupt from the poor creature’s body, the caterpillar mindlessly protects the youngsters from predators.

Mind control isn’t unique to wasps — flies and even fungi do it, too. But the book is about more than just the seemingly diabolical tactics of parasites. Prey species also have skin, or in some cases snot, in the game.

Hagfish, eel-like fish that scavenge the seafloor, eject thick, slimy mucus to clog the gills of sharks that try to make a meal of the hagfish. And the East African crested rat protects itself from dogs and other predators by slathering its fur with the chewed-up bark of the Acokanthera tree, traditionally used by indigenous hunters to make poison arrows. “A species may gain an edge, but any sort of edge is answered,” Simon writes. And so marches on the arms race of natural selection.

The author never dives deeply into exactly how these creatures evolved. The book is a quick, fun read that’s light on science and heavy on snark (not to mention a lot of anthropomorphizing). Readers familiar with Simon’s column for Wired, “Absurd Creature of the Week,” may already be acquainted with some of these animals. But the book is packed full of even more fascinating facts that will both impress and creep out.

Erasing stigma needed in mental health care

Scientists, politicians, clinicians, police officers and medical workers agree on one thing: The U.S. mental health system needs a big fix. Too few people get the help they need for mental ailments and emotional turmoil that can destroy livelihoods and lives.

A report in the October JAMA Internal Medicine, for instance, concludes that more than 70 percent of U.S. adults who experience depression don’t receive treatment for it.

Much attention focuses on developing better psychiatric medications and talk therapies. But those tactics may not be enough. New research suggests that the longstanding but understudied problem of stigma leaves many of those suffering mental ailments feeling alone, often unwilling to seek help and frustrated with treatment when they do.
“Stigma about mental illness is widespread,” says sociologist Bernice Pescosolido of Indiana University in Bloomington. And the current emphasis on mental ills as diseases of individuals can unintentionally inflame that sense of shame. An effective mental health care system needs to address stigma’s suffocating social grip, investigators say. “If we want to explain problems such as depression and suicide, we have to see them in a social context, not just as individual issues,” Pescosolido says.

Stigma as a mark of disgrace that taints someone in others’ eyes goes back several millennia. Sociologist Erving Goffman wrote in 1963 of stigma as a “spoiled identity” caused by society’s negative attitudes toward conditions such as mental illness. New evidence supports the idea that stigma about psychological problems runs surprisingly deep. What’s more, it filters through families and communities in different ways.

Many depressed people experience their condition primarily as a family predicament, not a brain disease, says a team led by UCLA psychiatrist and medical anthropologist Elizabeth Bromley. Those who seek treatment from primary care physicians feel tremendous shame about depression-related problems, such as being unable to work, that put a burden on their families. They hide their depression and any treatments, fearing rejection by those closest to them, Bromley and her colleagues report in the October Current Anthropology. Even if antidepressants ease symptoms such as insomnia and fatigue, depressed individuals describe the treatment as a Band-Aid stuck on unresolved family fractures, which can include a violent spouse or drug-addicted child.

Bromley’s team examined data from 46 people, representing various ethnic backgrounds and economic classes, identified in primary care clinics in 1996 as having depression. After their diagnosis, participants completed surveys every six months for two years, then at the five-year and nine-year marks. Interviews about symptoms, treatments and coping occurred at a 10-year follow-up.

Only two people described the depression treatment they received as helpful and appropriate to their situation. Both had family and friends who had noticed their depression symptoms and encouraged them to seek help.
The remaining 44 people spoke of depression as a threat to their closest relationships and family standing. They kept treatment secret to avoid intensifying family conflicts and for fear of rejection. Shame and emotional distance from family members remained even if depression treatments had positive effects. Participants commonly spoke of not wanting to burden their families with their condition. Several said that being singled out for treatment, which only required that one take antidepressants or, say, learn relaxation techniques, made them feel more estranged than ever from already fragile families and, what’s more, did nothing to resolve underlying family troubles.

“Individually focused, biomedical approaches can feel stigmatizing to many people with depression,” Bromley says.

Her team’s findings fit with previous observations that stigma discourages many people from discussing depression with their doctors for fear of breaking frayed family ties, writes psychologist Rob Whitley of Montreal’s McGill University in the same issue of Current Anthropology.

Excessively close ties among a network of families can also stoke stigma, researchers find. It can flourish in a wealthy, well-manicured community where everyone knows everyone else, if not in person than by word of mouth, say sociologists Anna Mueller of the University of Chicago and Seth Abrutyn of the University of Memphis.

In one such town, given the fictional name Poplar Grove by the researchers to protect privacy, teenagers struggle mightily under the weight of an “overactive grapevine of gossip.” Parents and peers constantly monitor whether teens live up to a community-wide standard of high academic achievement, the researchers report in the October American Sociological Review. Hard work is admired, but only if it yields superior grades with no signs of extra effort, such as using tutors. Academic struggles, anxiety and depression are stigmatized as signs of imperfection. As a result, most young people fear to seek any help from adults, including parents and teachers. That situation contributed to a rash of 19 suicides among current students and recent graduates of the town’s high school between 2000 and 2015, Mueller and Abrutyn propose.

The pair conducted interviews and focus groups in 2014 and 2015 with 110 volunteers, including teens who grew up in the town and lost a friend to suicide, parents whose children killed themselves, mental health workers in the town and high school teachers and counselors. In public forums held afterward, residents were surprised to hear from Mueller that one of Poplar Grove’s strengths — strong ties among neighbors concerned about the welfare of everyone’s kids — had a dark side. Parents talked about the shame they felt if a child experienced emotional problems and of feeling like bad parents when word got around. Teens expressed intense fear of failing to ace schoolwork and make it seem effortless. Students who had killed themselves were described by friends as having emotionally wilted under those pressures.

Bromley’s and Mueller’s findings underscore the need for mental health services that reach people where they live, Pescosolido says. Local services stand the best chance of getting troubled individuals to see help-seeking as acceptable behavior with the potential to change one’s life for the better.

Possible approaches include training pastors and other religious leaders in how to assist those with mental disorders and establishing public self-help groups and high school clubs devoted to open discussion and support. Local centers housing teams of social workers and counselors able to coordinate care for serious mental disorders would be a big advance, she says.

Job No. 1, Mueller says, involves getting beyond the popular assumption that mental illness and suicide arise solely in individuals. It’s long been known, for example, that chaotic communities where people feel isolated push suicide rates higher. But as Poplar Grove demonstrates, really tight-knit communities can have the same effect. “Deep psychological pain often has family and community sources,” she says.