Some meteorites contain superconducting bits

LOS ANGELES — In the search for new superconductors, scientists are leaving no stone — and no meteorite — unturned. A team of physicists has now found the unusual materials, famous for their ability to conduct electricity without resistance, within two space rocks.

The discovery implies that small amounts of superconducting materials might be relatively common in meteorites, James Wampler of the University of California, San Diego, said March 6 at a meeting of the American Physical Society. While the superconducting materials found weren’t new to science, additional interplanetary interlopers might harbor new, more technologically appealing varieties of superconductors, the researchers suggest.
Superconductors could potentially beget new, energy-saving technologies, but they have one fatal flaw: They require very cold temperatures to function, making them impractical for most uses. So scientists are on the hunt for new types of superconductors that work at room temperature (SN: 12/26/15, p. 25). If found, such a substance could lead to dramatic improvements in power transmission, computing and high-speed magnetically levitated trains, among other things.

Space rocks are a good avenue to explore in the search for new, exotic materials, says Wampler. “Meteorites are formed under these really unique, really extreme conditions,” such as high temperatures and pressures.

What makes the meteorite superconductors special, the researchers say, is that they occurred naturally, instead of being fabricated in a lab, as most known superconductors are. In fact, says physicist Ivan Schuller, also of University of California, San Diego, these are the highest temperature naturally occurring superconductors known — although they still have to be superchilled to about 5 kelvins (–268.15° C) to work. They are also the first known to have formed extraterrestrially.

“At this point, it’s a novelty,” says chemist Robert Cava of Princeton University. Although Cava is skeptical that scrutinizing meteorites will lead to new, useful superconductors, he says, it’s “kinda cool” that superconductors show up in meteorites.
Wampler, Schuller and colleagues bombarded bits of powdered meteorite with microwaves and looked for changes in how those waves were absorbed as the temperature changed. The sensitive technique can pick out minute traces of superconducting material within a sample.

Analysis of powdered scrapings from more than a dozen meteorites showed that two meteorites contained superconducting material. However, the superconductors found within the meteorites were run-of-the-mill varieties, made from alloys of metals including indium, tin and lead, which are already known to superconduct.

“The idea is, try to look for something that is very unusual,” such as a room temperature superconductor, says Schuller, who led the research. So far, that hope hasn’t been realized — but that hasn’t deterred the search for something more exotic. For a previous study, Wampler, Schuller and colleagues scanned 65 tiny micrometeorites, but found no superconductors at all.

Since parts of space are colder than 5 kelvins, some meteorites may even contain materials that were once superconducting in their chilly natural habitat. That’s an interesting idea, Wampler says, although it’s too early to say whether that possibility might have any astronomical implications for how the objects behave out in space.

Humans don’t get enough sleep. Just ask other primates.

People have evolved to sleep much less than chimps, baboons or any other primate studied so far.

A large comparison of primate sleep patterns finds that most species get somewhere between nine and 15 hours of shut-eye daily, while humans average just seven. An analysis of several lifestyle and biological factors, however, predicts people should get 9.55 hours, researchers report online February 14 in the American Journal of Physical Anthropology. Most other primates in the study typically sleep as much as the scientists’ statistical models predict they should.
Two long-standing features of human life have contributed to unusually short sleep times, argue evolutionary anthropologists Charles Nunn of Duke University and David Samson of the University of Toronto Mississauga. First, when humans’ ancestors descended from the trees to sleep on the ground, individuals probably had to spend more time awake to guard against predator attacks. Second, humans have faced intense pressure to learn and teach new skills and to make social connections at the expense of sleep.

As sleep declined, rapid-eye movement, or REM — sleep linked to learning and memory (SN: 6/11/16, p. 15) — came to play an outsize role in human slumber, the researchers propose. Non-REM sleep accounts for an unexpectedly small share of human sleep, although it may also aid memory (SN: 7/12/14, p. 8), the scientists contend.

“It’s pretty surprising that non-REM sleep time is so low in humans, but something had to give as we slept less,” Nunn says.

Humans may sleep for a surprisingly short time, but Nunn and Samson’s sample of 30 species is too small to reach any firm conclusions, says evolutionary biologist Isabella Capellini of the University of Hull in England. Estimated numbers of primate species often reach 300 or more.
If the findings hold up, Capellini suspects that sleeping for the most part in one major bout per day, rather than in several episodes of varying durations as some primates do, substantially lessened human sleep time.

Nunn and Samson used two statistical models to calculate expected daily amounts of sleep for each species. For 20 of those species, enough data existed to estimate expected amounts of REM and non-REM sleep.

Estimates of all sleep times relied on databases of previous primate sleep findings, largely involving captive animals wearing electrodes that measure brain activity during slumber. To generate predicted sleep values for each primate, the researchers consulted earlier studies of links between sleep patterns and various aspects of primate biology, behavior and environments. For instance, nocturnal animals tend to sleep more than those awake during the day. Species traveling in small groups or inhabiting open habitats along with predators tend to sleep less.

Based on such factors, the researchers predicted humans should sleep an average of 9.55 hours each day. People today sleep an average of seven hours daily, and even less in some small-scale groups (SN: 2/18/17, p. 13). The 36 percent shortfall between predicted and actual sleep is far greater than for any other primate in the study.

Nunn and Samson estimated that people now spend an average of 1.56 hours of snooze time in REM, about as much as the models predict should be spent in that sleep phase. An apparent rise in the proportion of human sleep devoted to REM resulted mainly from a hefty decline in non-REM sleep, the scientists say. By their calculations, people should spend an average of 8.42 hours in non-REM sleep daily, whereas the actual figure reaches only 5.41 hours.

One other primate, South America’s common marmoset (Callithrix jacchus), sleeps less than predicted. Common marmosets sleep an average of 9.5 hours and also exhibit less non-REM sleep than expected. One species sleeps more than predicted: South America’s nocturnal three-striped night monkey (Aotus trivirgatus) catches nearly 17 hours of shut-eye every day. Why these species’ sleep patterns don’t match up with expectations is unclear, Nunn says. Neither monkey departs from predicted sleep patterns to the extent that humans do.

This baby bird fossil gives a rare look at ancient avian development

This baby bird had barely hatched before it died 127 million years ago — and its lack of fully developed bony breastbone, or sternum, suggests it couldn’t yet fly. The tiny fossil, just a few centimeters long, is giving paleontologists a rare window into the early development of a group of extinct birds called Enantiornithes, researchers report March 5 in Nature Communications.

Previous studies of juvenile Enantiornithes have shown that the sternums of these birds ossified in a pattern different from modern and other ancient birds. The sternum’s ossification — a process in which the cartilage is replaced by bone — is a prerequisite to withstand the stresses of flight. But which parts of the sternum fuse first varies widely among modern birds. Those patterns are reflected in modern birds’ life histories, such as how soon birds can fly and how long they rely on their parents after hatching.
Similar diversity existed in how Enantiornithes developed too, the new study suggests. The baby bird’s sternum was still mostly cartilage at death, but some parts were beginning to turn to bone, which fossilized. That ossification pattern differed markedly from patterns in other known juvenile Enantiornithes, the researchers found.
It’s harder to say how these developmental features might have related to behavior. Although the baby bird couldn’t yet fly, it still might have been able to leave the nest. That’s also true of certain modern birds: Some plover chicks can walk and feed themselves shortly after hatching, but take a little longer to fly.

4 surprising things we just learned about Jupiter

Bit by bit, Jupiter is revealing its deepest, darkest secrets.

The latest findings are in from the Juno spacecraft. And they unveil the roots of the planet’s storms, what lies beneath the opaque atmosphere and a striking geometric layout of cyclones parked around the gas giant’s north and south poles.

“We’re at the beginning of dissecting Jupiter,” says Juno mission leader Scott Bolton of the Southwest Research Institute in San Antonio. And the picture that’s emerging — still just a sketch — topples many preconceived notions. The results appear in four papers in the March 8 Nature.
Juno has been orbiting Jupiter since July 4, 2016, on a mission to map the planet’s interior (SN: 6/25/16, p. 16). The probe loops around once every 53 days, traveling on an elongated orbit that takes the spacecraft from pole to pole and as close as about 4,000 kilometers above the cloud tops.

As it plows through Jupiter’s gravity field, Juno speeds up and slows down in response to shifting masses inside the planet. By measuring these minute accelerations and decelerations, scientists can calculate subtle variations in Jupiter’s gravity and deduce how its mass is distributed. That lets researchers build up a three-dimensional map of the planet’s internal structure. At the same time, Juno snaps pictures in visible and infrared light. While other probes have extensively photographed much of the planet, Juno is the first to get an intimate look at the north and south poles.

“The whole thing is really intriguing, especially when you compare [Jupiter] to other giant planets,” says Imke de Pater, a planetary scientist at the University of California, Berkeley. “They are all unique, it looks like.”
Check out these four surprising new things we’ve learned that make Jupiter one of a kind:

  1. Rings of cyclones
    Parked at each pole is a cyclone several thousand kilometers wide. That part isn’t surprising. But each of those cyclones is encircled by a polygonal arrangement of similarly sized storms — eight in the north and five in the south. The patterns have persisted throughout Juno’s visit.

“We don’t really understand why that would happen, and why they would collect up there in such a geometric fashion,” Bolton says. “That’s pretty amazing that nature is capable of something like that.”

  1. More than skin deep
    Researchers have long debated whether the photogenic bands of clouds that wrap around Jupiter have deep roots or just skim the top of the atmosphere. Juno’s new look shows that the bands penetrate roughly 3,000 kilometers below the cloud tops. That’s 30 times as thick as the bulk of Earth’s atmosphere. While just a tiny fraction of Jupiter’s diameter, that’s deeper than previously thought, Bolton says.
  2. Weighty weather
    Within those 3,000 kilometers lies what passes for an atmosphere on Jupiter. It’s the stage on which Jupiter’s turbulent weather plays out. The atmosphere alone is about three times as massive as our planet, or 1 percent of Jupiter’s entire mass, researchers estimate.
  3. Stuck together
    Below the atmosphere, Jupiter is fluid. But unlike most fluids, the planet rotates as if it’s a solid mass. Like kids playing crack-the-whip, atoms of hydrogen and helium figuratively link arms and spin around the planet in unison, scientists report. Earlier results from Juno also indicate there’s no solid core lurking beneath this fluid (SN: 6/24/17, p. 14), so anyone dropped into the planet can expect a terribly long fall.

Many of these results are preliminary, and it’s unclear what it all means for how Jupiter operates. But what’s been learned so far, Bolton says, “is quite different than anybody anticipated.”

Some meteorites contain superconducting bits

LOS ANGELES — In the search for new superconductors, scientists are leaving no stone — and no meteorite — unturned. A team of physicists has now found the unusual materials, famous for their ability to conduct electricity without resistance, within two space rocks.

The discovery implies that small amounts of superconducting materials might be relatively common in meteorites, James Wampler of the University of California, San Diego, said March 6 at a meeting of the American Physical Society. While the superconducting materials found weren’t new to science, additional interplanetary interlopers might harbor new, more technologically appealing varieties of superconductors, the researchers suggest.
Superconductors could potentially beget new, energy-saving technologies, but they have one fatal flaw: They require very cold temperatures to function, making them impractical for most uses. So scientists are on the hunt for new types of superconductors that work at room temperature (SN: 12/26/15, p. 25). If found, such a substance could lead to dramatic improvements in power transmission, computing and high-speed magnetically levitated trains, among other things.

Space rocks are a good avenue to explore in the search for new, exotic materials, says Wampler. “Meteorites are formed under these really unique, really extreme conditions,” such as high temperatures and pressures.

What makes the meteorite superconductors special, the researchers say, is that they occurred naturally, instead of being fabricated in a lab, as most known superconductors are. In fact, says physicist Ivan Schuller, also of University of California, San Diego, these are the highest temperature naturally occurring superconductors known — although they still have to be superchilled to about 5 kelvins (–268.15° C) to work. They are also the first known to have formed extraterrestrially.

“At this point, it’s a novelty,” says chemist Robert Cava of Princeton University. Although Cava is skeptical that scrutinizing meteorites will lead to new, useful superconductors, he says, it’s “kinda cool” that superconductors show up in meteorites.
Wampler, Schuller and colleagues bombarded bits of powdered meteorite with microwaves and looked for changes in how those waves were absorbed as the temperature changed. The sensitive technique can pick out minute traces of superconducting material within a sample.

Analysis of powdered scrapings from more than a dozen meteorites showed that two meteorites contained superconducting material. However, the superconductors found within the meteorites were run-of-the-mill varieties, made from alloys of metals including indium, tin and lead, which are already known to superconduct.

“The idea is, try to look for something that is very unusual,” such as a room temperature superconductor, says Schuller, who led the research. So far, that hope hasn’t been realized — but that hasn’t deterred the search for something more exotic. For a previous study, Wampler, Schuller and colleagues scanned 65 tiny micrometeorites, but found no superconductors at all.

Since parts of space are colder than 5 kelvins, some meteorites may even contain materials that were once superconducting in their chilly natural habitat. That’s an interesting idea, Wampler says, although it’s too early to say whether that possibility might have any astronomical implications for how the objects behave out in space.

50 years ago, pulsars burst onto the scene

The search for neutron stars has intensified because of a relatively small area, low in the northern midnight sky, from which the strangest radio signals yet received on Earth are being detected. If the signals come from a star, the source broadcasting the radio waves is very likely the first neutron star ever detected. — Science News, March 16, 1968

Update
That first known neutron star’s odd pulsating signature earned it the name “pulsar.” The finding garnered a Nobel Prize just six years after its 1968 announcement — although one of the pulsar’s discoverers, astrophysicist Jocelyn Bell Burnell, was famously excluded. Since then, astronomers have found thousands of these blinking collapsed stars, which have confirmed Einstein’s theory of gravity and have been proposed as a kind of GPS for spacecraft (SN: 2/3/18, p. 7).

On Twitter, the lure of fake news is stronger than the truth

There’s been a lot of talk about fake news running rampant online, but now there’s data to back up the discussion.

An analysis of more than 4.5 million tweets and retweets posted from 2006 to 2017 indicates that inaccurate news stories spread faster and further on the social media platform than true stories. The research also suggests that people play a bigger role in sharing falsehoods than bots.

These findings, reported in the March 9 Science, could guide strategies for curbing misinformation on social media. Until now, most investigations into the spread of fake news have been anecdotal, says Filippo Menczer, an informatics and computer scientist at Indiana University Bloomington not involved in the work. “We didn’t have a really large-scale, systematic study evaluating the spread of misinformation,” he says.
To study rumormongering trends on Twitter, researchers examined about 126,000 tweet cascades — families of tweets composed of one original tweet and all the retweets born of that original post. All of those cascades centered on one of about 2,400 news stories that had been verified or debunked by at least one fact-checking organization.
Deb Roy, a media scientist at MIT, and colleagues investigated how far and fast each cascade spread. Discussions of false stories tended to start from fewer original tweets, but some of those retweet chains then reached tens of thousands of users, while true news stories never spread to more than about 1,600 people. True news stories also took about six times as long as false ones to reach 1,500 people. Overall, fake news was about 70 percent more likely to be retweeted than real news.
Roy and colleagues initially removed the activity of automated Twitter accounts called bots from the analysis. But when bot traffic was added back into the mix, the researchers found that these computer programs spread false and true news about equally. This finding indicates that humans, rather than bots, are primarily to blame for spreading fake news on the platform.

People may be more inclined to spread tall tales because these stories are perceived to be more novel, says study coauthor Soroush Vosoughi, a data scientist at MIT. Compared to the topics of true news stories, fake news topics tended to deviate more from the tweet themes users were exposed to in the two months before a user retweeted a news story. Tweet replies to false news stories also contained more words indicating surprise.

It’s not entirely clear what kinds of conversations these stories sparked among users, as the researchers didn’t inspect the full content of all the posts in the dataset. Some people who retweeted fake news posts may have added comments to debunk those stories. But Menczer says the analysis still provides a “very good first step” in understanding what kinds of posts grab the most attention.

The study could help guide strategies for fighting the spread of fake news, says Paul Resnick, a computational social scientist at the University of Michigan in Ann Arbor who was not involved in the work. For instance, the finding that humans are more liable to retweet falsehoods than bots may mean that social media platforms should focus on discouraging humans from spreading rumors, rather than simply booting off misbehaved bots.

To help users identify true stories online, social media sites could label news pieces or media outlets with veracity scores — similar to how grocery stores and food producers offer nutrition facts, says study coauthor Sinan Aral, an expert on information diffusion in social networks at MIT. Platforms also could restrict accounts reputed to spread lies. It’s still unclear how successful such interventions might be, Aral says. “We’re barely starting to scratch the surface on the scientific evidence about false news, its consequences and its potential solutions.”

The debate over how long our brains keep making new nerve cells heats up

Adult mice and other rodents sprout new nerve cells in memory-related parts of their brains. People, not so much. That’s the surprising conclusion of a series of experiments on human brains of various ages first described at a meeting in November (SN: 12/9/17, p. 10). A more complete description of the finding, published online March 7 in Nature, gives heft to the controversial result, as well as ammo to researchers looking for reasons to be skeptical of the findings.

In contrast to earlier prominent studies, Shawn Sorrells of the University of California, San Francisco and his colleagues failed to find newborn nerve cells in the memory-related hippocampi of adult brains. The team looked for these cells in nonliving brain samples in two ways: molecular markers that tag dividing cells and young nerve cells, and telltale shapes of newborn cells. Using these metrics, the researchers saw signs of newborn nerve cells in fetal brains and brains from the first year of life, but they became rarer in older children. And the brains of adults had none.

There is no surefire way to spot new nerve cells, particularly in live brains; each way comes with caveats. “These findings are certain to stir up controversy,” neuroscientist Jason Snyder of the University of British Columbia writes in an accompanying commentary in the same issue of Nature.

Will Smith narrates ‘One Strange Rock,’ but astronauts are the real stars

“The strangest place in the whole universe might just be right here.” So says actor Will Smith, narrating the opening moments of a new documentary series about the wonderful unlikeliness of our own planet, Earth.

One Strange Rock, premiering March 26 on the National Geographic Channel, is itself a peculiar and unlikely creation. Executive produced by Academy Award–nominated Darren Aronofsky and by Jane Root of the production company Nutopia and narrated by Smith, the sprawling, ambitious 10-episode series is chock-full of stunningly beautiful images and CGI visuals of our dynamic planet. Each episode is united by a theme relating to Earth’s history, such as the genesis of life, the magnetic and atmospheric shields that protect the planet from solar radiation and the ways in which Earth’s denizens have shaped its surface.
The first episode, “Gasp,” ponders Earth’s atmosphere and where its oxygen comes from. In one memorable sequence, the episode takes viewers on a whirlwind journey from Ethiopia’s dusty deserts to the Amazon rainforest to phytoplankton blooms in the ocean. Dust storms from Ethiopia, Smith tells us, fertilize the rainforest. And that rainforest, in turn, feeds phytoplankton. A mighty atmospheric river, fueled by water vapor from the Amazon and heat from the sun, flows across South America until it reaches the Andes and condenses into rain. That rain erodes rock and washes nutrients into the ocean, feeding blooms of phytoplankton called diatoms. One out of every two breaths that we take comes from the photosynthesis of those diatoms, Smith adds.
As always, Smith is an appealing everyman. But the true stars of the series may be the eight astronauts, including Chris Hadfield and Nicole Stott, who appear throughout the series. In stark contrast to the colorful images of the planet, the astronauts are filmed alone, their faces half in shadow against a black background as they tell stories that loosely connect to the themes. The visual contrast emphasizes the astronauts’ roles as outsiders who have a rare perspective on the blue marble.
“Having flown in space, I feel this connection to the planet,” Stott told Science News . “I was reintroduced to the planet.” Hadfield had a similar sentiment: “It’s just one tiny place, but it’s the tiny place that is ours,” he added.
Each astronaut anchors a different episode. In “Gasp,” Hadfield describes a frightening moment during a spacewalk outside the International Space Station when his eyes watered. Without gravity, the water couldn’t form into teardrops, so it effectively blinded him. To remove the water, he was forced to allow some precious air to escape his suit. It’s a tense moment that underscores the pricelessness of the thin blue line, visible from space, that marks Earth’s atmosphere. “It contains everything that’s important to us,” Hadfield says in the episode. “It contains life.”

Stott, meanwhile, figures prominently in an episode called “Storm.” Instead of a weather system, the title refers to the rain of space debris that Earth has endured throughout much of its history — including the powerful collision that formed the moon (SN: 4/15/17, p. 18). Stott describes her own sense of wonder as a child, watching astronauts land on our closest neighbor — and how the travels of those astronauts and the rocks they brought back revealed that Earth and the moon probably originated from the same place.

It’s glimpses like these into the astronauts’ lives and personalities — scenes of Hadfield strumming “Space Oddity” on a guitar, for example, or Stott chatting with her son in the family kitchen — that make the episodes more than a series of beautiful and educational IMAX films. Having been away from the planet for a short time, the astronauts see Earth as precious, and they convey their affection for it well. Stott said she hopes that this will be the ultimate takeaway for viewers, for whom the series may serve as a reintroduction to the planet they thought they knew so well. “I hope that people will … appreciate and acknowledge the significance of [this reintroduction],” she said, “that it will result in an awareness and obligation to take care of each other.”
Editor’s note: This story was updated on March 19, 2018, to add a mention of a second executive producer.

Venus may be home to a new kind of tectonics

THE WOODLANDS, Texas — Venus’ crust is broken up into chunks that shuffle, jostle and rotate on a global scale, researchers reported in two talks March 20 at the Lunar and Planetary Science Conference.

New maps of the rocky planet’s surface, based on images taken in the 1990s by NASA’s Magellan spacecraft, show that Venus’ low-lying plains are surrounded by a complex network of ridges and faults. Similar features on Earth correspond to tectonic plates crunching together, sometimes creating mountain ranges, or pulling apart. Even more intriguing, the edges of the Venusian plains show signs of rubbing against each other, also suggesting these blocks of crust have moved, the researchers say.
“This is a new way of looking at the surface of Venus,” says planetary geologist Paul Byrne of North Carolina State University in Raleigh.

Geologists generally thought rocky planets could have only two forms of crust: a stagnant lid as on the moon or Mars — where the whole crust is one continuous piece — or a planet with plate tectonics as on Earth, where the surface is split into giant moving blocks that sink beneath or collide with each other. Venus was thought to have one solid lid (SN: 12/3/11, p. 26).

Instead, those options may be two ends of a spectrum. “Venus may be somewhere in between,” Byrne said. “It’s not plate tectonics, but it ain’t not plate tectonics.”

While Earth’s plates move independently like icebergs, Venus’ blocks jangle together like chaotic sea ice, said planetary scientist Richard Ghail of Imperial College London in a supporting talk.
Ghail showed similar ridges and faults around two specific regions on Venus that resemble continental interiors on Earth, such as the Tarim and Sichuan basins in China. He named the two Venusian plains the Nuwa Campus and Lada Campus. (The Latin word campus translates as a field or plain, especially one bound by a fence, so he thought it was fitting.)
Crustal motion may be possible on Venus because the surface is scorching hot (SN: 3/3/18, p. 14). “Those rocks already have to be kind of gooey” from the high temperatures, Byrne said. That means it wouldn’t take a lot of force to move them. Venus’ interior is also probably still hot, like Earth’s, so convection in the mantle could help push the blocks around.

“It’s a bit of a paradigm shift,” says planetary scientist Lori Glaze of NASA’s Goddard Space Flight Center, who was not involved in the new work. “People have always wanted Venus to be active. We believe it to be active, but being able to identify these features gives us more of a sense that it is.”

The work may have implications for astronomers trying to figure out which Earth-sized planets in other solar systems are habitable (SN: 4/30/16, p. 36). Venus is almost the same size and mass as the Earth. But no known life exists on Venus, where the average surface temperature is 462° Celsius and the atmosphere is acidic. Scientists have long speculated that the planet’s apparent lack of plate tectonics might play a role in making the planet so seemingly uninhabitable.

What’s more, the work also underlines the possibility that planets go through phases of plate tectonics (SN: 6/25/16, p. 8). Venus could have had plate tectonics like Earth 1 billion or 2 billion years ago, according to a simulation presented at the meeting by geophysicist Matthew Weller of the University of Texas at Austin.

“As Venus goes, does that predict where the Earth is going in the relatively near future?” he wondered.